Polymer Light-Emitting Electrochemical Cells: Doping, Luminescence and Mobility

We utilize the planar “surface cell” device configuration with Au contacts and a mixture of a soluble phenyl-substituted poly(para-phenylene vinylene) copolymer (“superyellow” ), a dicyclohexano-18-crown-6 crown ether, and a LiCF3SO3 salt as the active material. Because the lowest thermal transition occurs well above room temperature (RT), we can study the charging process at an elevated temperature and probe the exact location of the electroluminescence (EL) and doping-induced quenching of photoluminescence in charged devices at RT. We also employ the same active material in thin-film field-effect transistor structures to study the influence of electrochemical doping on transistor performance. Our results demonstrate that reversible bipolar electrochemical doping indeed takes place at applied voltages above the band gap of the semiconducting polymer sVo Eg/ ed, but also that limited unipolar electrochemical doping can take place at V, Eg/ e if the barrier heights for hole and electron injection are asymmetric. The EL originates in, or in close proximity to, the thin p-i-n junction, which is located close to the cathode.

[1]  Daniel Moses,et al.  Toward Improved and Tunable Polymer Field-Effect Transistors , 2004 .

[2]  D. Moses,et al.  Planar polymer light-emitting device with fast kinetics at a low voltage , 2004 .

[3]  Jun Gao,et al.  Planar polymer light-emitting electrochemical cells with extremely large interelectrode spacing , 2003 .

[4]  D. Moses,et al.  Influence of the anion on the kinetics and stability of a light-emitting electrochemical cell , 2003 .

[5]  D. Moses,et al.  Single-component light-emitting electrochemical cell with improved stability , 2003 .

[6]  J. deMello,et al.  Interfacial feedback dynamics in polymer light-emitting electrochemical cells , 2002 .

[7]  Robert A. Street,et al.  Contact effects in polymer transistors , 2002 .

[8]  T. Ouisse,et al.  Double-layer formation in organic light-emitting electrochemical cells , 2002 .

[9]  A. Bard,et al.  Thin-film solid-state electroluminescent devices based on tris(2,2'-bipyridine)ruthenium(II) complexes. , 2002, Journal of the American Chemical Society.

[10]  P. Blom,et al.  Simultaneous measurement of electron and hole mobilities in polymer light-emitting diodes , 2000 .

[11]  Graham,et al.  Electric field distribution in polymer light-emitting electrochemical cells , 2000, Physical review letters.

[12]  E. Smela,et al.  Characteristics of polythiophene surface light emitting diodes , 2000 .

[13]  H. Becker,et al.  Development of high performance PPVs: implications of the polymer-microstructure , 2000 .

[14]  M. Sampietro,et al.  Electrical characteristics of light emitting electrochemical cells based on a wide bandgap polymer , 2000 .

[15]  Heinrich Becker,et al.  Soluble PPVs with Enhanced Performance—A Mechanistic Approach , 2000 .

[16]  J. Bockris,et al.  Fundamentals of Electrodics , 2000 .

[17]  Jun Gao,et al.  Polymer light-emitting electrochemical cells with frozen junctions , 1999 .

[18]  A. Heeger,et al.  Direct observation of junction formation in polymer light-emitting electrochemical cells , 1999 .

[19]  Horia Metiu,et al.  Room-temperature fluorescence characteristics of single dye molecules adsorbed on a glass surface , 1998 .

[20]  Jun Gao,et al.  POLYMER P-I-N JUNCTION PHOTOVOLTAIC CELLS , 1998 .

[21]  J. Ferraris,et al.  Capacitance measurements of junction formation and structure in polymer light-emitting electrochemical cells , 1998 .

[22]  A. Heeger,et al.  Polymer Light-Emitting Electrochemical Cells: A Theoretical Study of Junction Formation under Steady-State Conditions , 1998 .

[23]  Mats Andersson,et al.  Polymer Light‐Emitting Electrochemical Cells with Frozen p‐i‐n Junction at Room Temperature , 1998 .

[24]  D. Cahen,et al.  Analysis of light emitting polymer electrochemical cells , 1997 .

[25]  Jun Gao,et al.  POLYMER LIGHT-EMITTING ELECTROCHEMICAL CELLS WITH FROZEN P-I-N JUNCTION , 1997 .

[26]  Darryl L. Smith Steady state model for polymer light-emitting electrochemical cells , 1997 .

[27]  Qibing Pei,et al.  Imaging the structure of the p‐n junction in polymer light‐emitting electrochemical cells , 1996 .

[28]  V. Cimrová,et al.  Efficient blue light emitting devices based on rigid‐rod polyelectrolytes , 1996 .

[29]  Qibing Pei,et al.  Voltage controlled two color light‐emitting electrochemical cells , 1996 .

[30]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells:  In Situ Formation of a Light-Emitting p-n Junction. , 1996, Journal of the American Chemical Society.

[31]  Karl Pichler,et al.  Exciton dissociation at a poly(p-phenylenevinylene)/C60 heterojunction , 1996 .

[32]  M. G. Harrison,et al.  Optical studies of chemical doping achieved by ion implantation in poly(p-phenylene vinylene) , 1996 .

[33]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[34]  Ian D. Parker,et al.  Carrier tunneling and device characteristics in polymer light‐emitting diodes , 1994 .

[35]  P. Dyreklev,et al.  Photoluminescence quenching in a polymer thin-film field-effect luministor , 1992 .

[36]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[37]  Shigenori Hayashi,et al.  Quenching of photoluminescence in poly(thiophene) films by electrochemical doping , 1987 .