Propagation of Singular Behavior for Gaussian Perturbations of Random Matrices

We study the asymptotic behavior of the eigenvalues of Gaussian perturbations of large Hermitian random matrices for which the limiting eigenvalue density vanishes at a singular interior point or vanishes faster than a square root at a singular edge point. First, we show that the singular behavior propagates macroscopically for sufficiently small Gaussian perturbations, and we describe the macroscopic eigenvalue behavior for Gaussian perturbations of critical size. Secondly, for sufficiently small Gaussian perturbations of unitary invariant random matrices, we prove that the microscopic eigenvalue correlations near the singular point are described by the same limiting kernel as in the unperturbed case. We also interpret our results in terms of nonintersecting Brownian paths with random starting positions, and we establish multi-time generalizations of the microscopic results.

[1]  Anke Schmid,et al.  An Introduction To Complex Analysis , 2016 .

[2]  Friedrich Götze,et al.  The arithmetic of distributions in free probability theory , 2005, math/0508245.

[3]  Arno B. J. Kuijlaars,et al.  Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields , 2000 .

[4]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[5]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[6]  P. Biane On the free convolution with a semi-circular distribution , 1997 .

[7]  Maurice Duits,et al.  Painlevé Kernels in Hermitian Matrix Models , 2013, 1302.1710.

[8]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[9]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[10]  The Lebesgue decomposition of the free additive convolution of two probability distributions , 2006, math/0603104.

[11]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[12]  P. Forrester Log-Gases and Random Matrices , 2010 .

[13]  Arno B.J. Kuijlaars,et al.  Integral representations for multiple Hermite and multiple Laguerre polynomials , 2004, math/0406616.

[14]  S. Hikami,et al.  Spectral form factor in a random matrix theory , 1997 .

[15]  A. Its,et al.  Higher‐order analogues of the Tracy‐Widom distribution and the Painlevé II hierarchy , 2009, 0901.2473.

[16]  E. Rains,et al.  Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs , 2004, math-ph/0409059.

[17]  R. Speicher Free Convolution and the Random Sum of Matrices , 1993 .

[18]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[19]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[20]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[21]  Double Scaling Limit in Random Matrix Models and a Nonlinear Hierarchy of Differential Equations , 2002, hep-th/0209087.

[22]  G. Parisi,et al.  A non-perturbative ambiguity free solution of a string model , 1990 .

[23]  Dong Wang,et al.  Correlation kernels for sums and products of random matrices , 2015, 1505.00610.

[24]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[25]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[26]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[27]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[28]  O. Johnson Free Random Variables , 2004 .

[29]  S. Hikami,et al.  Correlations of nearby levels induced by a random potential , 1996 .

[30]  Alexandru Nica,et al.  Free random variables , 1992 .

[31]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[32]  Tom Claeys,et al.  Universality of the double scaling limit in random matrix models , 2005 .

[33]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[34]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[35]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .