Propagation of Singular Behavior for Gaussian Perturbations of Random Matrices
暂无分享,去创建一个
Dong Wang | Tom Claeys | Karl Liechty | Arno B.J. Kuijlaars | A. Kuijlaars | Dong Wang | T. Claeys | Karl Liechty
[1] Anke Schmid,et al. An Introduction To Complex Analysis , 2016 .
[2] Friedrich Götze,et al. The arithmetic of distributions in free probability theory , 2005, math/0508245.
[3] Arno B. J. Kuijlaars,et al. Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields , 2000 .
[4] K. Johansson. Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.
[5] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[6] P. Biane. On the free convolution with a semi-circular distribution , 1997 .
[7] Maurice Duits,et al. Painlevé Kernels in Hermitian Matrix Models , 2013, 1302.1710.
[8] T. Claeys,et al. Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.
[9] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[10] The Lebesgue decomposition of the free additive convolution of two probability distributions , 2006, math/0603104.
[11] M. Bowick,et al. Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .
[12] P. Forrester. Log-Gases and Random Matrices , 2010 .
[13] Arno B.J. Kuijlaars,et al. Integral representations for multiple Hermite and multiple Laguerre polynomials , 2004, math/0406616.
[14] S. Hikami,et al. Spectral form factor in a random matrix theory , 1997 .
[15] A. Its,et al. Higher‐order analogues of the Tracy‐Widom distribution and the Painlevé II hierarchy , 2009, 0901.2473.
[16] E. Rains,et al. Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs , 2004, math-ph/0409059.
[17] R. Speicher. Free Convolution and the Random Sum of Matrices , 1993 .
[18] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[19] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[20] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[21] Double Scaling Limit in Random Matrix Models and a Nonlinear Hierarchy of Differential Equations , 2002, hep-th/0209087.
[22] G. Parisi,et al. A non-perturbative ambiguity free solution of a string model , 1990 .
[23] Dong Wang,et al. Correlation kernels for sums and products of random matrices , 2015, 1505.00610.
[24] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[25] Alexandru Nica,et al. Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .
[26] P. Di Francesco,et al. 2D gravity and random matrices , 1993 .
[27] Pavel Bleher,et al. Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.
[28] O. Johnson. Free Random Variables , 2004 .
[29] S. Hikami,et al. Correlations of nearby levels induced by a random potential , 1996 .
[30] Alexandru Nica,et al. Free random variables , 1992 .
[31] F. Hiai,et al. The semicircle law, free random variables, and entropy , 2006 .
[32] Tom Claeys,et al. Universality of the double scaling limit in random matrix models , 2005 .
[33] Percy Deift,et al. New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .
[34] M. L. Mehta,et al. Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .
[35] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .