Production of ultrahigh temperature composite materials HfB2-SiC and the study of their behavior under the action of a dissociated air flow

[1]  F. Golestani-Fard,et al.  Spark plasma sintering of TaC–HfC UHTC via disilicides sintering aids , 2013 .

[2]  Xinghong Zhang,et al.  Ablation behavior of ZrB2–SiC sharp leading edges , 2013 .

[3]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[4]  M. Nygren,et al.  On the enhancement of the spark-plasma sintering kinetics of ZrB2–SiC powder mixtures subjected to high-energy co-ball-milling , 2013 .

[5]  Peter A. Williams,et al.  Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content , 2012 .

[6]  Yu Zhou,et al.  Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites: Effects of sintering temperatures , 2012 .

[7]  H. Lu,et al.  The fabrication and mechanical properties of SiC/ZrB2 laminated ceramic composite prepared by spark plasma sintering , 2012 .

[8]  R. Savino,et al.  ZrB2 – SiC Sharp Leading Edges in High Enthalpy Supersonic Flows , 2012 .

[9]  S. Wang,et al.  Preparation of UHTC based coatings for C–SiC composites by slurry and CVD , 2012 .

[10]  F. Panerai,et al.  Characterization of gas/surface interactions for ceramic matrix composites in high enthalpy, low pressure air flow , 2012 .

[11]  Y. Sakka,et al.  Microstructure characterization of ZrB2–SiC composite fabricated by spark plasma sintering with TaSi2 additive , 2012 .

[12]  T. Fisher,et al.  The effect of heating rate and composition on the properties of spark plasma sintered zirconium diboride based composites , 2012 .

[13]  G. Hilmas,et al.  Oxidation of ultra-high temperature transition metal diboride ceramics , 2012 .

[14]  S. Guo,et al.  Densification behavior and microstructure of spark plasma sintered ZrB2-based composites with SiC particles , 2012 .

[15]  Mark M. Opeka,et al.  Modeling Oxidation Kinetics of SiC‐Containing Refractory Diborides , 2012 .

[16]  N. Simonenko,et al.  Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology , 2011 .

[17]  F. Sarasini,et al.  Silicon Carbide Based Plasma Sprayed Coatings , 2011, International Thermal Spray Conference.

[18]  N. Simonenko,et al.  Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides , 2011 .

[19]  William E Lee,et al.  Toward Oxidation-Resistant ZrB2-SiC Ultra High Temperature Ceramics , 2011 .

[20]  R. Savino,et al.  Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows , 2011 .

[21]  Douglas G. Fletcher,et al.  High-enthalpy test environments, flow modeling and in situ diagnostics for characterizing ultra-high temperature ceramics , 2010 .

[22]  Sylvia M. Johnson,et al.  Physical characterization and arcjet oxidation of hafnium-based ultra high temperature ceramics fabricated by hot pressing and field-assisted sintering , 2010 .

[23]  Raffaele Savino,et al.  Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions , 2010 .

[24]  Thomas H. Squire,et al.  Material property requirements for analysis and design of UHTC components in hypersonic applications , 2010 .

[25]  E. Simonenko,et al.  Low-temperature synthesis of TaC through transparent tantalum-carbon containing gel , 2010 .

[26]  T. Parthasarathy,et al.  Oxidation Behavior of Zirconium Diboride Silicon Carbide Produced by the Spark Plasma Sintering Method , 2009 .

[27]  A. Bellosi,et al.  Processing and properties of ultra-high temperature ceramics for space applications , 2008 .

[28]  Jiecai Han,et al.  Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions , 2008 .

[29]  Jean-Louis Sans,et al.  Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2–HfB2‐Based Ceramics , 2008 .

[30]  Jiecai Han,et al.  Oxidation-resistant ZrB2-SiC composites at 2200 °C , 2008 .

[31]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[32]  F. Monteverde Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering , 2007 .

[33]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[34]  T. Valente,et al.  Plasma spray deposition of ultra high temperature ceramics , 2006 .

[35]  V. A. Zhabrev,et al.  Kinetics of formation of ZrB2-MoSi2 glass-ceramic heat-resistant coatings on graphite , 2006 .

[36]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[37]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[38]  O. Hunter,et al.  Elastic properties of polycrystalline TiB2, ZrB2 and HfB2 from room temperature to 1300 °K☆ , 1969 .

[39]  T. Kawamura SILICON CARBIDE CRYSTALS GROWN IN NITROGEN ATMOSPHERE , 1965 .