An ab-initio calculation study on the super ionic conductors α-AgI and Ag2X (X = S, Se) with BCC structure

Abstract The ionic conduction mechanisms of some super ionic conductors, α-AgI, β-Ag 2 S, and α-Ag 2 Se, have been investigated by means of ab-initio calculations using the VASP (Vienna Ab-initio Simulation Package) code. Each of these phases has a BCC (body-centered cubic) sub-lattice formed by the anions, while the cations, which partially occupy the 12d sites, migrate along pathways through the centers of the faces of the tetrahedra. The calculated band gaps of α-AgI, β-Ag 2 S, and α-Ag 2 Se are 0.88 eV, 0.06 eV, and 0 eV, respectively, which implies that α-AgI is only an ionic conductor, whereas β-Ag 2 S and α-Ag 2 Se are mixed electronic and ionic conductors.

[1]  M. Sakata,et al.  The interpretation of neutron powder diffraction measurements on α‐AgI , 1979 .

[2]  R. S. Bauer,et al.  Electronic states of superionic conductors , 1976 .

[3]  P. Vashishta,et al.  Low temperature phase transformation in superionic conductors: A molecular dynamics study of silver sulfide , 1989 .

[4]  R. Cava,et al.  Diffuse-X-Ray-Scattering Study of the Fast-Ion Conductor β-Ag_{2}S , 1980 .

[5]  P. Krüger,et al.  AB INITIO ELECTRONIC STRUCTURE OF SILVER HALIDES CALCULATED WITH SELF-INTERACTION AND RELAXATION-CORRECTED PSEUDOPOTENTIALS , 1998 .

[6]  A. Wright,et al.  The structure of superionic compounds by powder neutron diffraction. I. Cation distribution in α-AgI , 1977 .

[7]  G. Baud,et al.  Superionic Conducting Glasses: Glass Formation and Conductivity in the System Ag2S‐AgPO3 , 1981 .

[8]  P. Chieux,et al.  Structure determination of AgPO3 and (AgPO3)0.5(AgI)0.5 glasses by neutron diffraction and small angle neutron scattering , 1987 .

[9]  Chiarotti,et al.  Silver-ion disorder in alpha -AgI: A computer simulation study. , 1991, Physical review. B, Condensed matter.

[10]  B. Owens,et al.  Thermodynamic studies in the high-conducting solid systems rubidium iodide-silver iodide, potassium iodide-silver iodide, and ammonium iodide-silver iodide , 1968 .

[11]  K. Funke,et al.  AgI-type solid electrolytes , 1976 .

[12]  D. Lazarus,et al.  Effect of pressure on ionic conductivity in rubidium silver iodide and silver iodide , 1978 .

[13]  S. Strässler,et al.  State of order inα-AgI , 1979 .

[14]  Tachibana,et al.  Diffusion path and Haven's ratio of mobile ions in alpha -Ag2Te. , 1988, Physical Review B (Condensed Matter).

[15]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[16]  R. Cava,et al.  Single-crystal neutron diffraction study of the fast-ion conductor β-Ag2S between 186 and 325°C , 1980 .

[17]  M. Catti,et al.  Orthorhombic intermediate state in the zinc blende to rocksalt transformation path of SiC at high pressure. , 2001, Physical review letters.

[18]  Angel Rubio,et al.  High-pressure phases of group-IV, III–V, and II–VI compounds , 2003 .

[19]  Shaorui Sun,et al.  First-principles study of the phase transition of HgS from cinnabar to rocksalt structure under high pressure , 2005 .

[20]  K. Shahi,et al.  Phase transition and theAg+-ion diffusion in AgI: Effect of homovalentBr−-ion substitution , 1981 .

[21]  P. Junod,et al.  METAL-NON-METAL TRANSITION IN SILVER CHALCOGENIDES , 1976 .

[22]  C. Sunandana,et al.  Electronic conductivity of mechanochemically synthesized nanocrystalline Ag1−xCuxI system using DC polarization technique , 2006 .

[23]  P. Boolchand,et al.  Mobile silver ions and glass formation in solid electrolytes , 2001, Nature.

[24]  Lee,et al.  Isotopic-substitution neutron-diffraction studies of (AgI)0.5(AgPO3)0.5 glass. , 1996, Physical review. B, Condensed matter.

[25]  J. Mikkelsen,et al.  Extended-x-ray-absorption-fine-structure investigation of mobile-ion density in superionic AgI, CuI, CuBr, and CuCl , 1981 .

[26]  Nicola Marzari,et al.  Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. , 2006, Physical review letters.

[27]  G. E. Matthews,et al.  Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented- Plane-Wave Formalisms for Density-Functional Calculations of Solids , 1997 .

[28]  Chung,et al.  Dynamics of silver ions in (AgI)x-(Ag2O-nB2O3)1-x glasses: A 109Ag nuclear magnetic resonance study. , 1990, Physical review. B, Condensed matter.

[29]  G. Burns,et al.  Results from Raman spectra of the superionic conductor AgI , 1977 .

[30]  J. Rino,et al.  Structural and dynamical correlations in Ag2Se: A molecular dynamics study of superionic and molten phases , 1988 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  M. Parrinello,et al.  Charge carrier interactions in ionic conductors: A classical molecular-dynamics and Monte Carlo study on AgI , 2000 .

[33]  J. Maier,et al.  AgI Nanoplates with Mesoscopic Superionic Conductivity at Room Temperature , 2005 .

[34]  S. Ihara,et al.  Molecular Dynamics Study of a-Ag 2 S , 1984 .

[35]  Y. Waseda,et al.  The structure of a-Ag2S , 1978 .

[36]  B. Owens,et al.  High-Conductivity Solid Electrolytes: MAg4I5 , 1967, Science.

[37]  Tachibana,et al.  Jump frequency of silver ions for diffusion in alpha -Ag2Te. , 1989, Physical review. B, Condensed matter.

[38]  R. Alben,et al.  Lattice dynamics of the superionic conductor AgI , 1977 .

[39]  J. Mikkelsen,et al.  Position and Dynamics of Ag Ions in Superionic AgI Using Extended X-Ray Absorption Fine Structure. , 1977 .

[40]  F. Shimojo,et al.  Diffusion mechanism of Ag ions in superionic conductor Ag2Se from Ab initio molecular-dynamics simulations , 2005 .

[41]  W. Howells,et al.  Ag+ dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering , 2001 .

[42]  P. Vashishta,et al.  Ionic motion in. cap alpha. -AgI , 1978 .

[43]  J. Ge,et al.  A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. , 2006, Chemistry.

[44]  R. Cava,et al.  Single-crystal neutron-diffraction study of AgI between 23° and 300°C , 1977 .