Adaptive FE–BE coupling for an electromagnetic problem in ℝ3—A residual error estimator

We construct a reliable and efficient residual-based local a posteriori error estimator for a Galerkin method coupling finite elements and boundary elements for an eddy current problem in a three-dimensional polyhedral domain. For the proof of the efficiency of the error estimator, we assume that the boundary mesh is quasi-uniform and that the boundary surface and the boundary data satisfy certain smoothness assumptions. The Galerkin method uses lowest-order Nedelec elements in the interior domain and vectorial surface rotations of continuous, piecewise bilinear functions on the boundary. Singular, weakly singular and hypersingular boundary integral operators appearing in the variational formulation show up in terms of the error estimator as well. The estimator is derived from the defect equation using a Helmholtz decomposition and Green's formulas. The decomposed parts of the Galerkin error are approximated by local interpolation operators. Numerical tests underline reliability and efficiency of the residual error estimator. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Wolfgang L. Wendland,et al.  Boundary integral equations for a three‐dimensional Brinkman flow problem , 2009 .

[2]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[3]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[4]  Ernst P. Stephan,et al.  An hp-adaptive finite element/boundary element coupling method for electromagnetic problems , 2007 .

[5]  Florian Leydecker hp-version of the boundary element method for electromagnetic problems : error analysis, adaptivity, preconditioners , 2006 .

[6]  Ralf Hiptmair,et al.  Symmetric Coupling for Eddy Current Problems , 2002, SIAM J. Numer. Anal..

[7]  E. Stephan,et al.  Implicit residual error estimators for the coupling of finite elements and boundary elements , 1999 .

[8]  Habib Ammari,et al.  A Justification of Eddy Currents Model for the Maxwell Equations , 2000, SIAM J. Appl. Math..

[9]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[10]  Martin Costabel,et al.  Strongly elliptic boundary integral equations for electromagnetic transmission problems , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Dorina Mitrea,et al.  Vector potential theory on nonsmooth domains in R3 and applications to electromagnetic scattering , 1997 .

[12]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[13]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[14]  R. Hiptmair,et al.  Galerkin Boundary Element Methods for Electromagnetic Scattering , 2003 .

[15]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[16]  A. Bossavit The computation of eddy-currents, in dimension 3, by using mixed finite elements and boundary elements in association , 1991 .

[17]  E. Stephan,et al.  A Boundary element method for an exterior problem for three-dimensional Maxwell's equations , 1983 .

[18]  Alberto Valli,et al.  An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..

[19]  R. C. MacCamy,et al.  A skin effect approximation for eddy current problems , 1985 .

[20]  Ernst P. Stephan,et al.  A posteriori error estimates for fem–bem couplings of three-dimensional electromagnetic problems , 2005 .

[21]  Ralf Hiptmair,et al.  Natural Boundary Element Methods for the Electric Field Integral Equation on Polyhedra , 2002, SIAM J. Numer. Anal..

[22]  E. Stephan,et al.  Solution procedures for three-dimensional eddy current problems , 1984 .

[23]  Carsten Carstensen,et al.  On the adaptive coupling of FEM and BEM in 2–d–elasticity , 1997 .

[24]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[25]  Ernst P. Stephan,et al.  An Adaptive Two-Level Method for the Coupling of Nonlinear FEM-BEM Equations , 1999 .

[26]  Martin Costabel,et al.  Symmetric Methods for the Coupling of Finite Elements and Boundary Elements (Invited contribution) , 1987 .

[27]  Snorre H. Christiansen,et al.  The electric field integral equation on Lipschitz screens: definitions and numerical approximation , 2003, Numerische Mathematik.

[28]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra , 2001 .

[29]  R. Hiptmair DISCRETE COMPACTNESS FOR P-VERSION OF TETRAHEDRAL EDGE ELEMENTS , 2009, 0901.0761.

[30]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[31]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications , 2001 .

[32]  J. Nédélec,et al.  Integral equations with non integrable kernels , 1982 .

[33]  Carsten Carstensen,et al.  A posteriori error estimate for the symmetric coupling of finite elements and boundary elements , 1996, Computing.