Numerical Analysis of Radiative Recombination and Reabsorption in GaAs/Si Tandem

We demonstrate a numerical analysis of the device impact of photon reabsorption on single-junction GaAs and tandem GaAs/Si solar cells. A self-consistent optical-electrical model that considers nonideal losses within the devices is developed. For single-junction devices, we find that the impact of photon recycling on the voltage increases monotonically with the injection level. For record-level GaAs solar cells, the voltage boost is 33 mV under open-circuit conditions and 13 mV at the maximum power point. For tandem GaAs/Si solar cells, photon reabsorption moderates the sensitivity of tandem efficiency to both obvious parameters like absorber thickness and implicit parameters like shunt resistance (Rsh) and bulk lifetime. Considering luminescent coupling results in a GaAs top cell that is 9.5% thicker than without luminescent coupling. The tandem device is 50% more sensitive to Rsh changes in the GaAs cell than Rsh changes in the Si cell. The impact of the GaAs top-cell bulk lifetime on tandem efficiency is reduced by 61% if photon reabsorption is not considered. This integrated optoelectronic device model allows one quantification of the implicit effects of photon recycling and luminescent coupling on device parameters for GaAs/Si tandem, providing a valuable tool for high-performance device optimization.

[1]  John F. Geisz,et al.  Effect of Luminescent Coupling on the Optimal Design of Multijunction Solar Cells , 2014, IEEE Journal of Photovoltaics.

[2]  John F. Geisz,et al.  Non-linear luminescent coupling in series-connected multijunction solar cells , 2012 .

[3]  G. F. Virshup,et al.  A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[4]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[5]  T. Gmitter,et al.  Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures. , 1988, Physical review letters.

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[7]  John F. Geisz,et al.  Analysis of Multijunction Solar Cell Current–Voltage Characteristics in the Presence of Luminescent Coupling , 2013, IEEE Journal of Photovoltaics.

[8]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[9]  Jing-Jing Li,et al.  Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement , 2013 .

[10]  Ali A. Rezazadeh,et al.  Empirical low-field mobility model for III-V compounds applicable in device simulation codes , 2000 .

[11]  Darius Kuciauskas,et al.  Effects of Internal Luminescence and Internal Optics on $V_{\bf oc}$ and $J_{\bf sc}$ of III--V Solar Cells , 2013, IEEE Journal of Photovoltaics.

[12]  Andreas W. Bett,et al.  Simulating single‐junction GaAs solar cells including photon recycling , 2006 .

[13]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[14]  John F. Geisz,et al.  Passivation of Interfaces in High-Efficiency Photovoltaic Devices , 1999 .

[15]  D. A. Clugston,et al.  PC1D version 5: 32-bit solar cell modeling on personal computers , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[16]  V. Yelundur,et al.  Enhanced silicon solar cell performance by rapid thermal firing of screen-printed metals , 2001 .

[17]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[18]  L. E. Regalado,et al.  Determination of the optical constants of MgF(2) and ZnS from spectrophotometric measurements and the classical oscillator method. , 1988, Applied optics.

[19]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[20]  H. F. MacMillan,et al.  Minority‐carrier lifetime and photon recycling in n‐GaAs , 1992 .

[21]  Tomah Sogabe,et al.  Experimental characterization and self-consistent modeling of luminescence coupling effect in III-V multijunction solar cells , 2013 .

[22]  Darius Kuciauskas,et al.  Effects of Internal Luminescence and Internal Optics on Voc and Jsc of III-V Solar Cells , 2014 .

[23]  E. Centurioni,et al.  Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. , 2005, Applied optics.

[24]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[25]  F. Dimroth,et al.  Effects of optical coupling in III-V multilayer systems , 2007 .

[26]  Steven A. Ringel,et al.  Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers , 2002 .

[27]  D. Derkacs,et al.  Luminescent Coupling in GaAs/GaInNAsSb Multijunction Solar Cells , 2013, IEEE Journal of Photovoltaics.

[28]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[29]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[30]  Y. Okada,et al.  Growth of high-quality GaAs/Si films for use in solar cell applications , 2004 .

[31]  M. Fuhrer,et al.  Practical Limits of Multijunction Solar Cell Performance Enhancement From Radiative Coupling Considering Realistic Spectral Conditions , 2014, IEEE Journal of Photovoltaics.

[32]  W. Gerlach,et al.  On the radiative recombination rate in silicon , 1972 .

[33]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[34]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[35]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[36]  Sumio Matsuda,et al.  GaAs solar cells grown on Si substrates for space use , 2001 .