Pegasus: sound continuous invariant generation

Continuous invariants are an important component in deductive verification of hybrid and continuous systems. Just like discrete invariants are used to reason about correctness in discrete systems without having to unroll their loops, continuous invariants are used to reason about differential equations without having to solve them. Automatic generation of continuous invariants remains one of the biggest practical challenges to the automation of formal proofs of safety for hybrid systems. There are at present many disparate methods available for generating continuous invariants; however, this wealth of diverse techniques presents a number of challenges, with different methods having different strengths and weaknesses. To address some of these challenges, we develop Pegasus : an automatic continuous invariant generator which allows for combinations of various methods, and integrate it with the KeYmaera X theorem prover for hybrid systems. We describe some of the architectural aspects of this integration, comment on its methods and challenges, and present an experimental evaluation on a suite of benchmarks.

[1]  Xiang Zhang,et al.  Invariant algebraic surfaces of the Lorenz system , 2002 .

[2]  Yiu-Kwong Man,et al.  Computing Closed Form Solutions of First Order ODEs Using the Prelle-Singer Procedure , 1993, J. Symb. Comput..

[3]  S. Shi On the nonexistence of rational first integrals for nonlinear systems and semiquasihomogeneous systems , 2007 .

[4]  Naijun Zhan,et al.  Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[5]  Yumi Iwasaki,et al.  Safety Verification Proofs for Physical Systems , 1998 .

[6]  Feng Zhao,et al.  Extracting and Representing Qualitative Behaviors of Complex Systems in Phase Spaces , 1991, IJCAI.

[7]  Sumit Gulwani,et al.  Constraint-Based Approach for Analysis of Hybrid Systems , 2008, CAV.

[8]  Ashish Tiwari Approximate Reachability for Linear Systems , 2003, HSCC.

[9]  Antoni Ferragut,et al.  A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields , 2010 .

[10]  Lawrence C. Paulson,et al.  Deciding Univariate Polynomial Problems Using Untrusted Certificates in Isabelle/HOL , 2017, Journal of Automated Reasoning.

[11]  Marie-Françoise Roy Basic algorithms in real algebraic geometry and their complexity: from Sturm's theorem to the existential theory of reals , 1996 .

[12]  Antoine Girard,et al.  Iterative computation of polyhedral invariants sets for polynomial dynamical systems , 2014, 53rd IEEE Conference on Decision and Control.

[13]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[14]  Dana Schlomiuk,et al.  Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields , 1993 .

[15]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[16]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.

[17]  André Platzer,et al.  ModelPlex: verified runtime validation of verified cyber-physical system models , 2014, Formal Methods in System Design.

[18]  R. Bellman Vector Lyanpunov Functions , 1962 .

[19]  Pablo A. Parrilo,et al.  SOSTOOLS Version 3.00 Sum of Squares Optimization Toolbox for MATLAB , 2013, ArXiv.

[20]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[21]  Liang Zou,et al.  An Improved HHL Prover: An Interactive Theorem Prover for Hybrid Systems , 2015, ICFEM.

[22]  Nathan Fulton,et al.  KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems , 2015, CADE.

[23]  André Platzer,et al.  Real World Verification , 2009, CADE.

[24]  Sofiène Tahar,et al.  Integrating Abstraction Techniques for Formal Verification of Analog Designs , 2009, J. Aerosp. Comput. Inf. Commun..

[25]  J. Llibre,et al.  n-1 independent first integrals for linear differential systems in Rn and Cn , 2004 .

[26]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[27]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[28]  Taylor T. Johnson,et al.  Non-linear Continuous Systems for Safety Verification , 2016, ARCH@CPSWeek.

[29]  Benjamin Kuipers,et al.  Proving Properties of Continuous Systems: Qualitative Simulation and Temporal Logic , 1997, Artif. Intell..

[30]  Thomas A. Henzinger,et al.  Conic Abstractions for Hybrid Systems , 2017, FORMATS.

[31]  Bican Xia,et al.  Reachability Analysis for Solvable Dynamical Systems , 2018, IEEE Transactions on Automatic Control.

[32]  Zhengfeng Yang,et al.  An efficient framework for barrier certificate generation of uncertain nonlinear hybrid systems , 2020 .

[33]  S. G. Deo On vector Lyapunov functions , 1971 .

[34]  André Platzer,et al.  dLι: Definite Descriptions in Differential Dynamic Logic , 2019, CADE.

[35]  César A. Muñoz,et al.  Automated Real Proving in PVS via MetiTarski , 2014, FM.

[36]  Michel Kieffer,et al.  Construction of parametric barrier functions for dynamical systems using interval analysis , 2015, Autom..

[37]  Ashish Tiwari,et al.  Nonlinear Systems: Approximating Reach Sets , 2004, HSCC.

[38]  Xin Chen,et al.  A Linear Programming Relaxation Based Approach for Generating Barrier Certificates of Hybrid Systems , 2016, FM.

[39]  André Platzer,et al.  VeriPhy: verified controller executables from verified cyber-physical system models , 2018, PLDI.

[40]  A. Papachristodoulou,et al.  On the construction of Lyapunov functions using the sum of squares decomposition , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[41]  J. Renegar Recent Progress on the Complexity of the Decision Problem for the Reals , 1990, Discrete and Computational Geometry.

[42]  André Platzer,et al.  A Method for Invariant Generation for Polynomial Continuous Systems , 2016, VMCAI.

[43]  Michele Boreale Complete Algorithms for Algebraic Strongest Postconditions and Weakest Preconditions in Polynomial ODE'S , 2018, SOFSEM.

[44]  André Platzer,et al.  A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.

[45]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[46]  Arnaldo Vieira Moura,et al.  Generating invariants for non-linear hybrid systems , 2015, Theor. Comput. Sci..

[47]  V. N. Gorbuzov,et al.  First integrals of ordinary linear differential systems , 2012, 1201.4141.

[48]  Xiao Han,et al.  MARS: A Toolchain for Modelling, Analysis and Verification of Hybrid Systems , 2017, Provably Correct Systems.

[49]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[50]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[51]  Ashish Tiwari,et al.  Abstractions for hybrid systems , 2008, Formal Methods Syst. Des..

[52]  Sriram Sankaranarayanan,et al.  Simulation-guided lyapunov analysis for hybrid dynamical systems , 2014, HSCC.

[53]  A. Platzer,et al.  ModelPlex: verified runtime validation of verified cyber-physical system models , 2016, Formal Methods Syst. Des..

[54]  Tjark Weber,et al.  Integrating a SAT Solver with an LCF-style Theorem Prover , 2005, PDPAR@CAV.

[55]  Ashish Tiwari,et al.  Generating Box Invariants , 2008, HSCC.

[56]  Ashish Tiwari,et al.  Verification and synthesis using real quantifier elimination , 2011, ISSAC '11.

[57]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[58]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[59]  Michel Kieffer,et al.  Computation of parametric barrier functions for dynamical systems using interval analysis , 2014, 53rd IEEE Conference on Decision and Control.

[60]  P. Olver Nonlinear Systems , 2013 .

[61]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[62]  Sascha Böhme,et al.  Fast LCF-Style Proof Reconstruction for Z3 , 2010, ITP.

[63]  Michele Boreale Complete Algorithms for Algebraic Strongest Postconditions and Weakest Preconditions in Polynomial ODE'S , 2018, SOFSEM.

[64]  M. J. Prelle,et al.  Elementary first integrals of differential equations , 1981, SYMSAC '81.

[65]  André Platzer,et al.  Logics of Dynamical Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[66]  Wei Chen,et al.  dReach: δ-Reachability Analysis for Hybrid Systems , 2015, TACAS.

[67]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[68]  André Platzer,et al.  Vector Barrier Certificates and Comparison Systems , 2018, FM.

[69]  Xiang Zhang Integrability of Dynamical Systems: Algebra and Analysis , 2017 .

[70]  Edmund M. Clarke,et al.  Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..

[71]  Thomas A. Henzinger,et al.  Safety Verification of Nonlinear Hybrid Systems Based on Invariant Clusters , 2017, HSCC.

[72]  Chaochen Zhou,et al.  A Calculus for Hybrid CSP , 2010, APLAS.

[73]  Bernhard Beckert,et al.  The KeY system 1.0 (Deduction Component) , 2007, CADE.

[74]  L. Pontryagin,et al.  Ordinary differential equations , 1964 .

[75]  Ashish Tiwari,et al.  Generating Polynomial Invariants for Hybrid Systems , 2005, HSCC.

[76]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[77]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[78]  André Platzer,et al.  A hierarchy of proof rules for checking positive invariance of algebraic and semi-algebraic sets , 2017, Comput. Lang. Syst. Struct..

[79]  C. M. Place Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour , 1992 .

[80]  Tjark Weber SMT solvers: new oracles for the HOL theorem prover , 2011, International Journal on Software Tools for Technology Transfer.

[81]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[82]  André Platzer,et al.  Pegasus: A Framework for Sound Continuous Invariant Generation , 2019, FM.

[83]  Hui Kong,et al.  Exponential-Condition-Based Barrier Certificate Generation for Safety Verification of Hybrid Systems , 2013, CAV.

[84]  André Platzer,et al.  Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.

[85]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..

[86]  Ashish Tiwari,et al.  Series of Abstractions for Hybrid Automata , 2002, HSCC.

[87]  Yiu Kwong Man,et al.  First integrals of autonomous systems of differential equations and the Prelle-Singer procedure , 1994 .

[88]  Sriram Sankaranarayanan,et al.  Automatic invariant generation for hybrid systems using ideal fixed points , 2010, HSCC '10.

[89]  E. Kasner Solutions of the Einstein equations involving functions of only one variable , 1925 .

[90]  Xin Chen,et al.  Lyapunov Function Synthesis Using Handelman Representations , 2013, NOLCOS.

[91]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..

[92]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[93]  André Platzer,et al.  A Complete Uniform Substitution Calculus for Differential Dynamic Logic , 2016, Journal of Automated Reasoning.

[94]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[95]  Liyun Dai,et al.  Barrier certificates revisited , 2013, J. Symb. Comput..

[96]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[97]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[98]  Sriram Sankaranarayanan,et al.  Validating numerical semidefinite programming solvers for polynomial invariants , 2016, SAS.

[99]  Yong Kiam Tan,et al.  Differential Equation Invariance Axiomatization , 2019, J. ACM.

[100]  Matthias Althoff,et al.  ARCH-COMP18 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics , 2018, ARCH@ADHS.

[101]  Shaull Almagor,et al.  Invariants for Continuous Linear Dynamical Systems , 2020, ICALP.

[102]  Nathan Fulton,et al.  Bellerophon: Tactical Theorem Proving for Hybrid Systems , 2017, ITP.

[103]  W. Böge,et al.  Quantifier Elimination for Real Closed Fields , 1985, AAECC.