Moore-penrose involutions in the classes of laplacians and simplices
暂无分享,去创建一个
The Moore-Penrose generalized inverse defines an involution in the class of real positive definite n×n matrices with rank n−1 and row-sums zero. We show that there is an analogous situation for weighted undirected graphs on n vertices and for classes (n−1)-simplices in a Euclidean (n−1)-space.
[1] F. R. Gantmakher. The Theory of Matrices , 1984 .
[2] G. Styan,et al. Circuit Duality and the General Network Inverse , 1965 .
[3] Miroslav Fiedler. Ueber die qualitative Lage des Mittelpunktes der umgeschriebenen Hyperkugel im $n$-Simplex , 1961 .
[4] Miroslav Fiedler,et al. A Geometric Approach to the Laplacian Matrix of a Graph , 1993 .
[5] Miroslav Fiedler,et al. A characterization of the Moore-Penrose inverse , 1993 .