Martingale Representation Theorem for the G-Expectation

This paper considers the nonlinear theory of G-martingales as introduced by Peng in [16, 17]. A martingale representation theorem for this theory is proved by using the techniques and the results established in [20] for the second order stochastic target problems and the second order backward stochastic differential equations. In particular, this representation provides a hedging strategy in a market with an uncertain volatility.

[1]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[2]  Nizar Touzi,et al.  Superreplication Under Gamma Constraints , 2000, SIAM J. Control. Optim..

[3]  H. Soner,et al.  The multi-dimensional super-replication problem under gamma constraints , 2005 .

[4]  S. Peng Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type , 1999 .

[5]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[6]  R. Karandikar On pathwise stochastic integration , 1995 .

[7]  Bo Zhang,et al.  Martingale characterization of G-Brownian motion , 2009 .

[8]  N. Karoui,et al.  Controle de processus de Markov , 1988 .

[9]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[10]  Marcel Nutz,et al.  Random G-expectations. , 2010, 1009.2168.

[11]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[14]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[15]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[16]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[17]  S. Peng G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty , 2007, 0711.2834.

[18]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[19]  J. Urbas,et al.  NONLINEAR ELLIPTIC AND PARABOLIC EQUATIONS OF THE SECOND ORDER , 1989 .

[20]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[21]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[22]  Yongsheng Song,et al.  Some properties on G-evaluation and its applications to G-martingale decomposition , 2010, 1001.2802.

[23]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[24]  On representation theorem of sublinear expectation related to G-Lévy process and paths of G-Lévy process , 2011, 1110.5448.

[25]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .