Continuous-time controllers for stabilizing periodic orbits of hybrid systems: Application to an underactuated 3D bipedal robot

This paper presents a systematic approach to exponentially stabilize periodic orbits in nonlinear systems with impulse effects, a special class of hybrid systems. Stabilization is achieved with a time invariant continuous-time controller. The presented method assumes a parametrized family of continuous-time controllers has been designed so that (1) a periodic orbit is induced, and (2) the orbit itself is invariant under the choice of parameters in the controllers. By investigating the properties of the Poincaré return map, a sensitivity analysis is presented that translates the stabilization problem into a set of Bilinear Matrix Inequalities (BMIs). A BMI optimization problem is set up to select the parameters of the continuous-time controller to achieve exponential stability. We illustrate the power of the approach by finding new stabilizing solutions for periodic orbits of an underactuated 3D bipedal robot.

[1]  Robert D. Gregg,et al.  Reduction-based Control of Three-dimensional Bipedal Walking Robots , 2010, Int. J. Robotics Res..

[2]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[3]  Russ Tedrake,et al.  Optimizing robust limit cycles for legged locomotion on unknown terrain , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[4]  Ryan W. Sinnet,et al.  3 D Bipedal Robotic Walking : Models , Feedback Control , and Open Problems , 2010 .

[5]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[6]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[7]  C. Canudas-de-Wit,et al.  Motion planning and feedback stabilization of periodic orbits for an Acrobot , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  J. Grizzle Remarks on Event-Based Stabilization of Periodic Orbits in Systems with Impulse Effects , 2006 .

[9]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[10]  Jessy W. Grizzle,et al.  Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot , 2014 .

[11]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[12]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[13]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[14]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[15]  Luca Consolini,et al.  Virtual Holonomic Constraints for Euler-Lagrange Systems , 2010 .

[16]  D. Baĭnov,et al.  Systems with impulse effect : stability, theory, and applications , 1989 .

[17]  Aaron D. Ames,et al.  Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach , 2009, HSCC.

[18]  Koushil Sreenath,et al.  Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL , 2013, Int. J. Robotics Res..

[19]  M. A. Pai,et al.  Hybrid systems view of power system modelling , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[20]  Aaron D. Ames,et al.  A geometric approach to three-dimensional hipped bipedal robotic walking , 2007, 2007 46th IEEE Conference on Decision and Control.

[21]  Dongjun Lee,et al.  Time-Scaling Trajectories of Passive-Dynamic Bipedal Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[22]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[23]  Jessy W. Grizzle,et al.  Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry , 2014, IEEE Transactions on Robotics.

[24]  Christine Chevallereau,et al.  3D Bipedal Robotic Walking: Models, Feedback Control, and Open Problems , 2010 .

[25]  Timothy Bretl,et al.  Control and Planning of 3-D Dynamic Walking With Asymptotically Stable Gait Primitives , 2012, IEEE Transactions on Robotics.

[26]  Jonathon W. Sensinger,et al.  Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg , 2014, IEEE Transactions on Control Systems Technology.

[27]  M. Spong,et al.  CONTROLLED SYMMETRIES AND PASSIVE WALKING , 2002 .

[28]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[29]  D. Henrion,et al.  Solving polynomial static output feedback problems with PENBMI , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[30]  Nasser Sadati,et al.  Stabilization of Periodic Orbits for Planar Walking With Noninstantaneous Double-Support Phase , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[32]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[33]  Milos Zefran,et al.  Underactuated dynamic three-dimensional bipedal walking , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[34]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[35]  Moritz Diehl,et al.  Stability Optimization of Hybrid Periodic Systems via a Smooth Criterion , 2009, IEEE Transactions on Automatic Control.

[36]  Wassim M. Haddad,et al.  Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control , 2006 .

[37]  Nasser Sadati,et al.  Exponential stabilisation of periodic orbits for running of a three-dimensional monopedal robot , 2011 .

[38]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..