Evidence for Pseudogap Phase in Cerium Superhydrides: CeH$_{10}$ and CeH$_9$

Polyhydride superconductors have been shown to possess metallic properties with a Bardeen-Cooper-Schrieffer-type superconducting ground state. Here, we provide evidence for unconventional transport associated with a pseudogap phase in cubic cerium superhydride CeH$_{10}$ ($\textit{T}$$_C$ = 116 K) at pressure of 115-125 GPa. A large negative magnetoresistance in the non-superconducting state below 90 K, quasi $\textit{T}$-linear electrical resistance, and a sign-change of its temperature dependence mark the emergence of this phase. We studied the magnetic phase diagrams and the upper critical fields $\textit{B}$$_{C2}$(T) of CeH$_{10}$, CeH$_9$, and CeD$_9$ in pulsed fields up to 70 T. $\textit{B}$$_{C2}$(T) of CeH$_9$ and CeD$_9$ exhibits pronounced saturation at low temperatures in accordance with the Werthamer-Helfand-Hohenberg model, whereas CeH$_{10}$ stands out in particular, as it does not obey this model. Our observations, therefore, reveal the unconventional nature of non-superconducting state of cerium superhydride CeH$_{10}$.

[1]  I. Troyan,et al.  Vortex Phase Dynamics in Yttrium Superhydride YH6 at Megabar Pressures. , 2023, The journal of physical chemistry letters.

[2]  I. Kruglov,et al.  Non‐Fermi‐Liquid Behavior of Superconducting SnH4 , 2023, Advanced science.

[3]  A. Oganov,et al.  High-temperature superconductivity in hydrides , 2022, 2207.07637.

[4]  K. Shimizu,et al.  Effect of Magnetic Impurities on Superconductivity in LaH10 , 2022, Advanced materials.

[5]  T. Xiang,et al.  Quantum phase transition from superconducting to insulating-like state in a pressurized cuprate superconductor , 2022, Nature Physics.

[6]  Xiaoli Huang,et al.  High-pressure synthesis of superconducting clathratelike YH4 , 2021, Physical Review B.

[7]  S. Mozaffari,et al.  Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure , 2021, Nature Communications.

[8]  M. Calandra,et al.  Anomalous High‐Temperature Superconductivity in YH6 , 2021, Advanced materials.

[9]  Shuyuan Liu,et al.  Effect of hole doping on superconductivity in compressed CeH9 at high pressures , 2021, Physical Review B.

[10]  Xiaoli Huang,et al.  High-Temperature Superconducting Phases in Cerium Superhydride with a T_{c} up to 115 K below a Pressure of 1 Megabar. , 2021, Physical review letters.

[11]  R. Ahuja,et al.  Superconductivity of superhydride CeH10 under high pressure , 2020, Materials Research Express.

[12]  L. Taillefer,et al.  High density of states in the pseudogap phase of the cuprate superconductor HgBa2CuO4+δ from low-temperature normal-state specific heat , 2020 .

[13]  Jun-Hyung Cho,et al.  Origin of enhanced chemical precompression in cerium hydride CeH$_{9}$ , 2020, 2007.02073.

[14]  E. Talantsev Debye temperature in LaHx-LaDy superconductors , 2020, 2004.03155.

[15]  S. Takeyama,et al.  Magnetic-field-induced insulator–metal transition in W-doped VO2 at 500 T , 2020, Nature Communications.

[16]  E. Gregoryanz,et al.  Predicted high-temperature superconductivity in cerium hydrides at high pressures , 2019 .

[17]  Xiaoli Huang,et al.  Polyhydride CeH9 with an atomic-like hydrogen clathrate structure , 2019, Nature Communications.

[18]  S. Mozaffari,et al.  Superconducting phase diagram of H3S under high magnetic fields , 2019, Nature Communications.

[19]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[20]  A. Oganov,et al.  On Distribution of Superconductivity in Metal Hydrides , 2018, Current Opinion in Solid State and Materials Science.

[21]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Yanming Ma,et al.  Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. , 2017, Physical review letters.

[23]  Kondo Akihiro,et al.  Origin of positive out-of-plane magnetoconductivity in overdoped Bi1.6Pb0.4Sr2CaCu1.96Fe0.04O8+.DELTA. , 2016 .

[24]  K. Kindo,et al.  Origin of positive out-of-plane magnetoconductivity in overdoped Bi$_{1.6}$Pb$_{0.4}$Sr$_{2}$CaCu$_{1.96}$Fe$_{0.04}$O$_{8+\delta}$ , 2016, 1609.05299.

[25]  Feliciano Giustino,et al.  EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions , 2016, Comput. Phys. Commun..

[26]  A. P. Drozdov,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[27]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[28]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[29]  Mitsuaki Kawamura,et al.  Improved tetrahedron method for the Brillouin-zone integration applicable to response functions , 2014, 2203.15648.

[30]  C. Scheuerlein,et al.  Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires , 2013, 1311.6901.

[31]  S Kumar,et al.  Pseudogap state in strongly disordered conventional superconductor, NbN , 2012 .

[32]  L. Benfatto,et al.  Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition. , 2010, Physical review letters.

[33]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 410 GPa , 2010 .

[34]  R. Gross,et al.  Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd(2-x)Ce(x)CuO(4) revealed by Shubnikov-de Haas oscillations. , 2009, Physical review letters.

[35]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  M. Sanquer,et al.  Pseudogap in a thin film of a conventional superconductor. , 2009, Nature communications.

[37]  S. Louie,et al.  Electron-phonon interaction using Wannier functions , 2007 .

[38]  Armel Le Bail,et al.  Whole powder pattern decomposition methods and applications: A retrospection , 2005, Powder Diffraction.

[39]  Stefano de Gironcoli,et al.  Origins of low- and high-pressure discontinuities of $T_{c}$ in niobium , 2005, cond-mat/0504077.

[40]  G. Blatter,et al.  Unconventionally large quantum-dissipative gap regime in overdoped Bi 2 Sr 2 CaCu 2 O 8+y , 2003 .

[41]  P. Kes,et al.  Closing the pseudogap by Zeeman splitting in Bi2Sr2CaCu2O8+y at high magnetic fields. , 2001, Physical review letters.

[42]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[43]  E. Milani,et al.  The role of density of states fluctuations in the normal state properties of high Tc superconductors , 1999 .

[44]  M. Randeria,et al.  ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+x , 1997, cond-mat/9712100.

[45]  Moscow,et al.  The Role of Density of States Fluctuations in the Normal State Properties of High Tc Superconductors , 1997, cond-mat/9710175.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Steiner,et al.  Influence of the spin gap on the normal state transport in YBa2Cu4O8. , 1993, Physical review letters.

[48]  L. J. V. D. Pauw A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE , 1991 .

[49]  Lee,et al.  Enhancement of interaction constants in disordered systems: Experimental evidence. , 1986, Physical review. B, Condensed matter.

[50]  N. Ashcroft,et al.  METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR. , 1968 .

[51]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . II , 1966 .

[52]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[53]  C. F. Hempstead,et al.  Magnetization and Critical Supercurrents , 1963 .

[54]  S. Takeyama,et al.  Ja n 20 20 Magnetic-field-induced insulator – metal transition in W-doped VO 2 at 500 T , 2020 .

[55]  Evgenii G Maksimov,et al.  The electron-phonon interaction and the physical properties of metals , 1997 .

[56]  A. Aronov,et al.  Electron–Electron Interaction In Disordered Conductors , 1985 .