Design and Fabrication Technology

The RF and microwave design field is inherently exciting because of its combination of art, science, and intuition. The designer has to have knowledge in different areas, such as electronics, physics, mathematics, technology, and mechanical processes. The main goals of integrated circuit design described in this chapter are to achieve the right level of integration and good electrical performance, and provide cost-effective solutions. Module design permits to confine all RF elements and devices within an enclosed module to ease integration and manufacturing requirements. By integrating more than one element in one module, assemblies are produced that exhibit superior microwave performance in a reduced package size at a lower-system cost than a collection of discrete elements. Better performance is the result of eliminating excess line lengths, some connectors, and multiple mismatches.

[1]  E. J. Wilkinson An N-Way Hybrid Power Divider , 1960 .

[2]  Nirod K. Das,et al.  A microstrip array fed by a new type of multilayer feeding network , 1995 .

[3]  F. D. Ronde A New Class of Microstrip Directional Couplers , 1970 .

[4]  Nicolaos G. Alexopoulos,et al.  Optimization of aperture transitions for multi-port microstrip circuits , 1996, IMS 1996.

[5]  M. Caulton,et al.  Microwave integrated-circuit technology-a survey , 1970 .

[6]  B. Bufford Metal-injection molding cuts packaging costs , 1999 .

[7]  V. I. Gvozdev,et al.  Three-dimensional microwave integrated circuits , 1985 .

[8]  Leo G. Maloratsky Reviewing the basics of suspended striplines , 2002 .

[9]  Y. E. Yang,et al.  Modeling and analysis of vias in multilayered integrated circuits , 1993 .

[10]  Jong-Gwan Yook,et al.  Microtechnology in the development of three-dimensional circuits , 1998 .

[11]  Inder J. Bahl,et al.  Microwave Solid State Circuit Design , 1988 .

[12]  K. Gupta,et al.  Microstrip Lines and Slotlines , 1979 .

[13]  S. B. Cohn,et al.  Slot Line on a Dielectric Substrate , 1969 .

[14]  C. Q. Scrantom,et al.  LTCC technology: where we are and where we're going. II , 1999 .

[15]  C. Aury,et al.  Various Excitation of Coplanar Waveguide , 1979, 1979 IEEE MTT-S International Microwave Symposium Digest.

[16]  Kai Chang,et al.  Broad-band uniplanar hybrid-ring and branch-line couplers , 1993 .

[17]  C. Thébault,et al.  Optimization of the Thick-and Thin-Film Technologies for Microwave Circuits on Alumina and Fused Silica Substrates , 1978 .

[18]  Reinmut K. Hoffmann,et al.  Handbook of microwave integrated circuits , 1987 .

[19]  K. Anzai,et al.  Thick Film and Direct Bond Copper Forming Technologies for Aluminum Nitride Substrate , 1985 .

[20]  M. Wolf,et al.  MM-WAVE MICROELECTRONICS MANUFACTURING , 1998 .

[21]  R. W. Jackson,et al.  Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide , 1989 .

[22]  Thomas S. Laverghetta,et al.  Microwave materials and fabrication techniques , 1991 .

[23]  Chien-Hsun Ho,et al.  Experimental investigations of CPW-slotline transitions for uniplanar microwave integrated circuits , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[24]  Leo G. Maloratsky,et al.  Quarter-wavelength N-way power dividers/combiners: Historical aspects and new modifications , 2003 .

[25]  J. Izadian,et al.  Microwave Transition Design , 1988 .