User's Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm

[1]  A. Pitman,et al.  Relative climatic effects of landcover change and elevated carbon dioxide combined with aerosols: A comparison of model results and observations , 2001 .

[2]  S. Running,et al.  Assessing the impact of urban land development on net primary productivity in the southeastern United States , 2003 .

[3]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[4]  S. Running,et al.  The Earth Observing System and Forest Management , 2000 .

[5]  Amanda M. Schwantes,et al.  Global satellite monitoring of climate-induced vegetation disturbances. , 2015, Trends in plant science.

[6]  John S. Kimball,et al.  Recent Climate-Driven Increases in Vegetation Productivity for the Western Arctic: Evidence of an Acceleration of the Northern Terrestrial Carbon Cycle , 2007 .

[7]  W. Cohen,et al.  Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation , 2003 .

[8]  P. Reich,et al.  Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species , 1995, Oecologia.

[9]  Ke Zhang,et al.  Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses , 2007 .

[10]  S. Running,et al.  Carbon sequestration studied in western U.S. mountains , 2002 .

[11]  Maosheng Zhao,et al.  Satellite Remote Sensing of Terrestrial Net Primary Production for the Pan-Arctic Basin and Alaska , 2006 .

[12]  Steven W. Running,et al.  Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation , 2014 .

[13]  W. Cohen,et al.  Evaluation of MODIS NPP and GPP products across multiple biomes. , 2006 .

[14]  Steven W. Running,et al.  Usefulness and limits of MODIS GPP for estimating wheat yield , 2005 .

[15]  Steven W. Running,et al.  3-PG Productivity Modeling of Regenerating Amazon Forests: Climate Sensitivity and Comparison with MODIS-Derived NPP , 2006 .

[16]  Peter E. Thornton,et al.  Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls , 2000 .

[17]  M. G. Ryan,et al.  Effects of Climate Change on Plant Respiration. , 1991, Ecological applications : a publication of the Ecological Society of America.

[18]  W. Parton,et al.  Patterns of new versus recycled primary production in the terrestrial biosphere , 2013, Proceedings of the National Academy of Sciences.

[19]  Maosheng Zhao,et al.  Evolution of hydrological and carbon cycles under a changing climate , 2011 .

[20]  Stephen Polasky,et al.  A Global System for Monitoring Ecosystem Service Change , 2012 .

[21]  Ramakrishna R. Nemani,et al.  Biospheric Monitoring and Ecological Forecasting , 2003 .

[22]  W Kolby Smith,et al.  Bioenergy potential of the United States constrained by satellite observations of existing productivity. , 2012, Environmental science & technology.

[23]  S. Running,et al.  Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System , 2000 .

[24]  P. Reich,et al.  Photosynthesis-nitrogen relations in Amazonian tree species , 1994, Oecologia.

[25]  Helmut Haberl,et al.  Human Appropriation of Net Primary Production: Patterns, Trends, and Planetary Boundaries , 2014 .

[26]  Shunlin Liang,et al.  Mapping High-Resolution Incident Photosynthetically Active Radiation over Land from Polar-Orbiting and Geostationary Satellite Data , 2007 .

[27]  Brady W. Allred,et al.  Ecosystem services lost to oil and gas in North America , 2015, Science.

[28]  S. Running,et al.  Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels , 1993 .

[29]  Steven W. Running,et al.  Global Bioenergy Capacity as Constrained by Observed Biospheric Productivity Rates , 2012 .

[30]  Yi Y. Liu,et al.  Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle , 2014, Nature.

[31]  J. E. Hunt,et al.  Commentary: Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding , 2000, Ecosystems.

[32]  Maosheng Zhao,et al.  Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses , 2006 .

[33]  Maosheng Zhao,et al.  Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009 , 2010, Science.

[34]  Stephen Sitch,et al.  FLUXNET and modelling the global carbon cycle , 2007 .

[35]  Steven W. Running,et al.  A vegetation classification logic-based on remote-sensing for use in global biogeochemical models , 1994 .

[36]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[37]  Richard H. Waring,et al.  Forest Ecosystems: Analysis at Multiple Scales , 1985 .

[38]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[39]  Yu Zhang,et al.  Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data , 2000, IEEE Trans. Geosci. Remote. Sens..

[40]  Steven W. Running,et al.  Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products , 2003 .

[41]  Ke Zhang,et al.  Impacts of large‐scale oscillations on pan‐Arctic terrestrial net primary production , 2007 .

[42]  John S. Kimball,et al.  Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency , 2014 .

[43]  Steven W. Running,et al.  Evaluating water stress controls on primary production in biogeochemical and remote sensing based models , 2007 .

[44]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[45]  P. J. Wood,et al.  World Forest Biomass and Primary Production Data. , 1983 .

[46]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[47]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[48]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[49]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[50]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[51]  Ramakrishna R. Nemani,et al.  MODIS-Derived Terrestrial Primary Production , 2010 .

[52]  W. Cohen,et al.  Site‐level evaluation of satellite‐based global terrestrial gross primary production and net primary production monitoring , 2005 .

[53]  Ramakrishna R. Nemani,et al.  Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Mark G. Tjoelker,et al.  Modelling respiration of vegetation: evidence for a general temperature‐dependent Q10 , 2001 .

[55]  Faith Ann Heinsch,et al.  Decreasing photosynthesis at different spatial scales during the late growing season on a boreal cutover. , 2005, Tree physiology.

[56]  Akihiko Ito,et al.  A historical meta‐analysis of global terrestrial net primary productivity: are estimates converging? , 2011 .

[57]  Peter B Reich,et al.  Key canopy traits drive forest productivity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[58]  K. Hibbard,et al.  A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data , 1999 .

[59]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[60]  Nicholas C. Coops,et al.  Comparisons of predictions of net primary production and seasonal patterns in water use derived with two forest growth models in Southwestern Oregon , 2001 .

[61]  Hirofumi Hashimoto,et al.  El Niño–Southern Oscillation–induced variability in terrestrial carbon cycling , 2004 .

[62]  J. Ardö,et al.  The supply and demand of net primary production in the Sahel , 2014 .

[63]  J. S. Kimball,et al.  Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels , 2005 .

[64]  J. H. M. Thornley,et al.  Modelling the Components of Plant Respiration: Some Guiding Principles , 2000 .

[65]  Cristina Milesi,et al.  Assessing the environmental impacts of human settlements using satellite data , 2003 .

[66]  D. P. Turner,et al.  Scaling net primary production to a MODIS footprint in support of Earth observing system product validation , 2004 .

[67]  C. Wirth,et al.  Reconciling Carbon-cycle Concepts, Terminology, and Methods , 2006, Ecosystems.

[68]  Sinkyu Kang,et al.  Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. , 2006, The Science of the total environment.

[69]  J. Randerson,et al.  Global net primary production: Combining ecology and remote sensing , 1995 .

[70]  Steven W. Running,et al.  Aggregate measures of ecosystem services: can we take the pulse of nature? , 2005 .

[71]  Steven W. Running,et al.  Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability , 2015, PLoS biology.

[72]  Ramakrishna R. Nemani,et al.  Asymmetric warming over coastal California and its impact on the premium wine industry , 2001 .

[73]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[74]  R. Betts,et al.  The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[75]  R. Koschel,et al.  Primary Production , 2021, Tropical Marine Ecology.

[76]  Peter E. Thornton,et al.  Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models , 2009 .

[77]  S. Reed,et al.  Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity , 2014 .

[78]  Steven W. Running New Satellite Technologies Enhance Study of Terrestrial Biosphere , 2002 .

[79]  Maosheng Zhao,et al.  Applying Improved Estimates of MODIS Productivity to Characterize Grassland Vegetation Dynamics , 2006 .

[80]  P. Sellers Canopy reflectance, photosynthesis, and transpiration. II. the role of biophysics in the linearity of their interdependence , 1987 .

[81]  Steven W. Running,et al.  The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011 , 2013 .

[82]  J. Hunt,et al.  Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI , 1994 .

[83]  Steven W. Running,et al.  A Measurable Planetary Boundary for the Biosphere , 2012, Science.

[84]  S. Running,et al.  8 – Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models , 1993 .

[85]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[86]  Peter E. Thornton,et al.  Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States , 2002 .

[87]  Hirofumi Hashimoto,et al.  Climate variability, vegetation productivity and people at risk , 2005 .

[88]  Dirk Pflugmacher,et al.  Numerical Terradynamic Simulation Group 7-2006 MODIS land cover and LAI Collection 4 product quality across nine sites in the western hemisphere , 2018 .

[89]  S. Running,et al.  Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data , 2008 .

[90]  J. C. Winslow,et al.  Numerical Terradynamic Simulation Group 3-2001 Mapping Weekly Rangeland Vegetation Productivity Using MODIS Algorithms , 2018 .