Effects of restoring normoglycemia in type 1 diabetes on inflammatory profile and renal extracellular matrix structure after simultaneous pancreas and kidney transplantation.

[1]  Richard Barnett Type 1 diabetes , 2018, The Lancet.

[2]  A. Hartmann,et al.  Long-term outcomes after organ transplantation in diabetic end-stage renal disease. , 2014, Diabetes research and clinical practice.

[3]  Abd A. Alhasan,et al.  Role of 6-O-Sulfated Heparan Sulfate in Chronic Renal Fibrosis* , 2014, The Journal of Biological Chemistry.

[4]  T. Jenssen,et al.  Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice , 2013, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[5]  A. Hartmann,et al.  Improved patient survival with simultaneous pancreas and kidney transplantation in recipients with diabetic end-stage renal disease , 2013, Diabetologia.

[6]  F. Reinholt,et al.  Diabetic Nephropathy and Extracellular Matrix , 2012, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[7]  S. Satchell,et al.  Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability , 2012, The Journal of pathology.

[8]  J. Zaia,et al.  WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. , 2011, Journal of the American Society of Nephrology : JASN.

[9]  Ping Xie,et al.  A glimpse of various pathogenetic mechanisms of diabetic nephropathy. , 2011, Annual review of pathology.

[10]  J. Zaia,et al.  Organ-specific Heparan Sulfate Structural Phenotypes* , 2009, Journal of Biological Chemistry.

[11]  R. Holman,et al.  10-year follow-up of intensive glucose control in type 2 diabetes. , 2008, The New England journal of medicine.

[12]  J. Miner,et al.  Revisiting the glomerular charge barrier in the molecular era , 2008, Current opinion in nephrology and hypertension.

[13]  M. Alessi,et al.  Metabolic syndrome, haemostasis and thrombosis , 2008, Thrombosis and Haemostasis.

[14]  Yuan Zhang,et al.  Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions , 2007, Proceedings of the National Academy of Sciences.

[15]  R. Burgess,et al.  Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. , 2007, The American journal of pathology.

[16]  Farhad R Danesh,et al.  Contribution of proteoglycans towards the integrated functions of renal glomerular capillaries: a historical perspective. , 2007, The American journal of pathology.

[17]  C. Strathdee,et al.  CCL4 Protects From Type 1 Diabetes by Altering Islet β-Cell–Targeted Inflammatory Responses , 2007, Diabetes.

[18]  J. van den Born,et al.  No Change in Glomerular Heparan Sulfate Structure in Early Human and Experimental Diabetic Nephropathy* , 2006, Journal of Biological Chemistry.

[19]  L. P. Van den Heuvel,et al.  Aberrant heparan sulfate profile in the human diabetic kidney offers new clues for therapeutic glycomimetics. , 2006, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[20]  H. Bangstad,et al.  Increased syndecan-1 in serum is related to early nephropathy in type 1 diabetes mellitus patients , 2006, Diabetologia.

[21]  B. Zinman,et al.  Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. , 2005, The New England journal of medicine.

[22]  J. Navarro,et al.  Role of inflammation in diabetic complications. , 2005, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[23]  H. Ha,et al.  Plasminogen activator inhibitor‐1 and diabetic nephropathy , 2005, Nephrology.

[24]  P. Scifo,et al.  Cross-sectional assessment of the effect of kidney and kidney-pancreas transplantation on resting left ventricular energy metabolism in type 1 diabetic-uremic patients: a phosphorous-31 magnetic resonance spectroscopy study. , 2005, Journal of the American College of Cardiology.

[25]  Michael Brownlee,et al.  The pathobiology of diabetic complications: a unifying mechanism. , 2005, Diabetes.

[26]  E. von Stebut,et al.  Macrophage inflammatory protein-1. , 2004, The international journal of biochemistry & cell biology.

[27]  Inge Nelissen,et al.  Gelatinase B functions as regulator and effector in leukocyte biology , 2001, Journal of leukocyte biology.

[28]  A. D. Vriese,et al.  Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. , 2001, Journal of the American Society of Nephrology : JASN.

[29]  A. Groffen,et al.  Decreased Glomerular Expression of Agrin in Diabetic Nephropathy and Podocytes, Cultured in High Glucose Medium , 2001, Nephron Experimental Nephrology.

[30]  F. Fazio,et al.  Patient Survival and Cardiovascular Events after Kidney–Pancreas Transplantation: Comparison with Kidney Transplantation Alone in Uremic IDDM Patients , 2000, Cell transplantation.

[31]  J. van den Born,et al.  Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. , 2000, Kidney international.

[32]  R. Wolfe,et al.  Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. , 1999, The New England journal of medicine.

[33]  E. Duh,et al.  Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. , 1999, Diabetes.

[34]  D. Lorenz,et al.  Impact of renal cadaveric transplantation on survival in end-stage renal failure: evidence for reduced mortality risk compared with hemodialysis during long-term follow-up. , 1998, Journal of the American Society of Nephrology : JASN.

[35]  R. Holman,et al.  Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) , 1998, The Lancet.

[36]  D. Sutherland,et al.  Reversal of lesions of diabetic nephropathy after pancreas transplantation. , 1998, The New England journal of medicine.

[37]  P. Fiorina,et al.  Left ventricular function in insulin-dependent and in non-insulin-dependent diabetic patients: radionuclide assessment. , 1997, Cardiology.

[38]  S. Genuth,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. , 1993, The New England journal of medicine.

[39]  F. Reinholt,et al.  Ultrastructural immunolocalization of osteopontin in metaphyseal and cortical bone. , 1991, Matrix.

[40]  S. Factor,et al.  Diabetic heart disease: The clinical and pathological spectrum—Part I , 1989, Clinical cardiology.

[41]  H. Parving,et al.  Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. , 1982, Acta endocrinologica.

[42]  H. Keen,et al.  MICROALBUMINURIA AS A PREDICTOR OF CLINICAL NEPHROPATHY IN INSULIN-DEPENDENT DIABETES MELLITUS , 1982, The Lancet.

[43]  M. Farquhar,et al.  Presence of heparan sulfate in the glomerular basement membrane. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Abbal,et al.  FACTOR-VIII COMPLEX AND ENDOTHELIAL DAMAGE , 1975, The Lancet.

[45]  G. Palade,et al.  GLOMERULAR PERMEABILITY , 1961, The Journal of experimental medicine.

[46]  M. Cooper,et al.  Mechanisms of diabetic complications. , 2013, Physiological reviews.

[47]  A. Gruessner 2011 update on pancreas transplantation: comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the International Pancreas Transplant Registry (IPTR). , 2011, The review of diabetic studies : RDS.

[48]  J. van den Born,et al.  A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. , 1992, Kidney international.