A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework

The aim of this paper is to propose a unified view of evolutionary approaches for multi-objective optimization. Following three main issues dealing with fitness assignment, diversity preservation and elitism, a robust and flexible model, based on a fine-grained decomposition, is introduced. This model is validated by demonstrating how state-of-the-art methods can conveniently fit into it. Then, a modular implementation is proposed and is successfully integrated in a general purpose software framework dedicated to the reusable design of evolutionary multi-objective optimization techniques.

[1]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[2]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[3]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[4]  El-Ghazali Talbi,et al.  Parallel multi-objective algorithms for the molecular docking problem , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[5]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[6]  Maarten Keijzer,et al.  Evolving Objects: A General Purpose Evolutionary Computation Library , 2001, Artificial Evolution.

[7]  El-Ghazali Talbi,et al.  Designing cellular networks using a parallel hybrid metaheuristic on the computational grid , 2007, Comput. Commun..

[8]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[10]  Arnaud Liefooghe,et al.  Metaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study , 2008, 0804.3965.

[11]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[12]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[13]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[14]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[15]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[18]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[19]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[20]  El-Ghazali Talbi,et al.  Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem , 2007, EMO.

[21]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[22]  D. Dentcheva,et al.  On several concepts for ɛ-efficiency , 1994 .

[23]  El-Ghazali Talbi,et al.  New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi‐objective approach , 2008 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  El-Ghazali Talbi,et al.  Comparison of population based metaheuristics for feature selection: Application to microarray data classification , 2008, 2008 IEEE/ACS International Conference on Computer Systems and Applications.

[26]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[27]  El-Ghazali Talbi,et al.  ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization , 2007, EMO.

[28]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[29]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[30]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.