Lateral buckling behavior and strengthening techniques of coped steel I-beams
暂无分享,去创建一个
Abstract An experimental study of the inelastic lateral torsional buckling of coped beams with simply supported ends is presented in this paper. Six full scale coped steel I-beam tests were conducted. The test parameters include the aspect ratio of cope length to beam depth at coped region as well as the ratio of cope depth to beam depth. The results of experimental tests were compared with finite element model results. The test results showed that a reduction in the inelastic buckling load due to coping could reach more than 60% of the uncoped buckling capacity. A group of twelve finite element models for steel coped beams is investigated. A comparison between uncoped models and coped models with different geometrical parameters is performed. The finite element results showed that both the cope length and cope depth have a significant influence on the lateral torsional buckling capacity. A parametric study of coped beams with stiffeners at coped region is reported in this paper. Based on the results of coped beams strengthened with either horizontal or vertical stiffeners, it is found that for cope depth to beam depth (dc/D) ≥ 0.25; both horizontal and vertical stiffeners are required to prevent local web buckling at the coped region.
[1] Angus C.C. Lam,et al. Experimental study of the strength and behaviour of reinforced coped beams , 2011 .
[2] J. J. Roger Cheng. Design of steel beams with end copes , 1993 .
[3] Michael C.H. Yam,et al. A numerical study of the strength and behaviour of reinforced coped beams , 2013 .
[4] Michael C.H. Yam,et al. The Local Web Buckling Strength of Stiffened Coped Steel I-Beams , 2007 .
[5] J Johan Maljaars,et al. Lateral–torsional buckling resistance of coped beams , 2005 .