Eigenvalues and Singular Value Decompositions of Reduced Biquaternion Matrices

In this paper, the algorithms for calculating the eigenvalues, the eigenvectors, and the singular value decompositions (SVD) of a reduced biquaternion (RB) matrix are developed. We use the SVD to approximate an RB matrix in the least square sense and define the pseudoinverse matrix of an RB matrix. Moreover, the RB SVD is employed to implement the SVD of a color image. The computational complexity for the SVD of an RB matrix is only one-fourth of that for the SVD of conventional quaternion matrices. Therefore, many useful image-processing methods using the SVD can be extended to a color image without separating the color image into three channels. The numbers of the eigenvalues of an n times n RB matrix, the nth roots of an RB, and the zeros of an RB polynomial with degree n are all finite and equal to n2 , not infinite as those of conventional quaternions.

[1]  Soo-Chang Pei,et al.  Color image processing by using binary quaternion-moment-preserving thresholding technique , 1999, IEEE Trans. Image Process..

[2]  Stephen J. Sangwine,et al.  Hypercomplex color-sensitive smoothing filters , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[3]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[4]  Xiaokang Yang,et al.  2D Quaternion Fourier Transform: The Spectrum Properties and its Application in Color Image Registration , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[5]  Ivan Niven,et al.  Equations in Quaternions , 1941 .

[6]  H. Andrews,et al.  Singular value decompositions and digital image processing , 1976 .

[7]  Soo-Chang Pei,et al.  Color pattern recognition by quaternion correlation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[8]  Stephen J. Sangwine,et al.  Hypercomplex auto- and cross-correlation of color images , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[9]  Soo-Chang Pei,et al.  Commutative reduced biquaternions and their Fourier transform for signal and image processing applications , 2004, IEEE Transactions on Signal Processing.

[10]  Soo-Chang Pei,et al.  Quaternion matrix singular value decomposition and its applications for color image processing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[11]  Todd A. Ell Hypercomplex Color Affine Filters , 2007, 2007 IEEE International Conference on Image Processing.

[12]  Nicolas Le Bihan,et al.  Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing , 2004, Signal Process..

[13]  Stephen J. Sangwine,et al.  Colour image edge detector based on quaternion convolution , 1998 .

[14]  William Rowan Hamilton,et al.  Elements of Quaternions , 1969 .

[15]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[16]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[17]  Wang Shuxun,et al.  Estimating frequencies of two dimensional harmonics with extended quaternion matrix pencil , 2005, 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications.

[18]  Hans F. de Groote,et al.  On the Complexity of Quaternion Multiplication , 1975, Inf. Process. Lett..

[19]  Methodi Kovatchev,et al.  Singular Value Decomposition And Digital Image Processing , 1990, Other Conferences.

[20]  Shmuel Winograd Some bilinear forms whose multiplicative complexity depends on the field of constants , 2005, Mathematical systems theory.

[21]  Soo-Chang Pei,et al.  Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT , 2001, IEEE Trans. Signal Process..

[22]  C. M. Davenport,et al.  A commutative hypercomplex algebra with associated function theory , 1996 .

[23]  H.-D. Schutte,et al.  Hypercomplex numbers in digital signal processing , 1990, IEEE International Symposium on Circuits and Systems.

[24]  Soo-Chang Pei,et al.  A novel block truncation coding of color images by using quaternion-moment-preserving principle , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[25]  Thomas Bülow,et al.  Multi-Dimensional Signal Processin Using an Algebraically Extended Signal Representation , 1997, AFPAC.

[26]  Samuel Eilenberg,et al.  The “fundamental theorem of algebra” for quaternions , 1944 .

[27]  Hisamichi Toyoshima,et al.  Computationally Efficient Bicomplex Multipliers for Digital Signal Processing , 1998 .

[28]  Hisamichi Toyoshima,et al.  A RESIDUE NUMBER SYSTEM FOR HYPERCOMPLEX ARITHMETIC , 1992 .

[29]  Price,et al.  An Introduction to Multicomplex SPates and Functions , 1990 .

[30]  Nicolas Le Bihan,et al.  Quaternion principal component analysis of color images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[31]  Stephen J. Sangwine,et al.  The discrete quaternion Fourier transform , 1997 .

[32]  Thomas Bülow,et al.  Hypercomplex spectral signal representations for the processing and analysis of images , 1999 .

[33]  Stephen J. Sangwine,et al.  Hypercomplex Wiener-Khintchine theorem with application to color image correlation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[34]  Kazuhiro Ueda,et al.  Digital filters with hypercomplex coefficients , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[35]  Stephen J. Sangwine,et al.  Colour-sensitive edge detection using hypercomplex filters , 2000, 2000 10th European Signal Processing Conference.

[36]  T. Ell Hypercomplex spectral transformations , 1992 .

[37]  H. Andrews,et al.  Singular Value Decomposition (SVD) Image Coding , 1976, IEEE Trans. Commun..

[38]  José Vitória,et al.  Computing the Zeros of Quaternion Polynomials , 2001 .

[39]  Vassil S. Dimitrov,et al.  On the Multiplication of Reduced Biquaternions and Applications , 1992, Inf. Process. Lett..

[40]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.

[41]  T. Ell,et al.  Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[42]  Ivan Niven The Roots of a Quaternion , 1942 .

[43]  Nicolas Le Bihan,et al.  MUSIC Algorithm for Vector-Sensors Array Using Biquaternions , 2007, IEEE Transactions on Signal Processing.

[44]  Stephen J. Sangwine,et al.  Decomposition of 2D Hypercomplex Fourier transforms into pairs of complex fourier transforms , 2000, 2000 10th European Signal Processing Conference.

[45]  I. Bar-Itzhack,et al.  Novel quaternion Kalman filter , 2002, IEEE Transactions on Aerospace and Electronic Systems.