Microbial Virulence and Interactions With Metals.

[1]  F. C. Soncini,et al.  Survival in amoeba—a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a “copper pathogenicity island” , 2015, Applied Microbiology and Biotechnology.

[2]  M. Bachman,et al.  Diverging roles of bacterial siderophores during infection. , 2015, Metallomics : integrated biometal science.

[3]  Prof. M.R Shakibaie,et al.  Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii , 2015, Virulence.

[4]  J. P. Henderson,et al.  Pathogenic adaptations to host-derived antibacterial copper , 2014, Front. Cell. Infect. Microbiol..

[5]  M. Dinauer,et al.  Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic , 2013, ACS chemical biology.

[6]  D. Giedroc,et al.  Manganese acquisition and homeostasis at the host-pathogen interface , 2013, Front. Cell. Infect. Microbiol..

[7]  Z. Piotrowska-Seget,et al.  Molecular basis of active copper resistance mechanisms in Gram-negative bacteria , 2013, Cell Biology and Toxicology.

[8]  J. Argüello,et al.  The Mechanism of Cu+ Transport ATPases , 2012, The Journal of Biological Chemistry.

[9]  T. Ryan,et al.  PcoE--a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. , 2012, Journal of inorganic biochemistry.

[10]  Eric P. Skaar,et al.  Nutritional immunity: transition metals at the pathogen–host interface , 2012, Nature Reviews Microbiology.

[11]  Sam P. Brown,et al.  Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control , 2012, Trends in microbiology.

[12]  C. Fierke,et al.  ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. , 2012, Journal of inorganic biochemistry.

[13]  J. Valentine,et al.  Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds , 2012, Proceedings of the National Academy of Sciences.

[14]  J. Imlay,et al.  Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress* , 2012, The Journal of Biological Chemistry.

[15]  S. Cordwell,et al.  Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin. , 2012, Journal of proteome research.

[16]  G. López-Castejón,et al.  Two Zinc Uptake Systems Contribute to the Full Virulence of Listeria monocytogenes during Growth In Vitro and In Vivo , 2011, Infection and Immunity.

[17]  Eric P Skaar,et al.  Molecular mechanisms of Staphylococcus aureus iron acquisition. , 2011, Annual review of microbiology.

[18]  I. Boneca,et al.  A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence , 2011, PLoS pathogens.

[19]  C. Fierke,et al.  Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in Escherichia coli. , 2011, Journal of biomedical optics.

[20]  G. Gao,et al.  Insight into the Interaction of Metal Ions with TroA from Streptococcus suis , 2011, PloS one.

[21]  C. Bougault,et al.  Biochemical characterization of the histidine triad protein PhtD as a cell surface zinc-binding protein of pneumococcus. , 2011, Biochemistry.

[22]  J. Imlay,et al.  Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese , 2011, Proceedings of the National Academy of Sciences.

[23]  M. McEvoy,et al.  Switch or Funnel: How RND-Type Transport Systems Control Periplasmic Metal Homeostasis , 2011, Journal of Bacteriology.

[24]  J. Imlay,et al.  The SoxRS response of Escherichia coli is directly activated by redox‐cycling drugs rather than by superoxide , 2011, Molecular microbiology.

[25]  P. Petrarca,et al.  Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells , 2011, BMC Microbiology.

[26]  Michael Steinert,et al.  Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. , 2011, Seminars in cell & developmental biology.

[27]  J. Utzinger,et al.  The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. , 2010, The American journal of clinical nutrition.

[28]  D. Heinrichs,et al.  Specificity of Staphyloferrin B Recognition by the SirA Receptor from Staphylococcus aureus , 2010, The Journal of Biological Chemistry.

[29]  Clément Nizak,et al.  From Grazing Resistance to Pathogenesis: The Coincidental Evolution of Virulence Factors , 2010, PloS one.

[30]  J. Tommassen,et al.  An Outer Membrane Receptor of Neisseria meningitidis Involved in Zinc Acquisition with Vaccine Potential , 2010, PLoS pathogens.

[31]  D. Heinrichs,et al.  The Staphylococcus aureus Siderophore Receptor HtsA Undergoes Localized Conformational Changes to Enclose Staphyloferrin A in an Arginine-rich Binding Pocket* , 2010, The Journal of Biological Chemistry.

[32]  W. Maret,et al.  Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. , 2010, Metallomics : integrated biometal science.

[33]  Fiona S. L. Brinkman,et al.  The Association of Virulence Factors with Genomic Islands , 2009, PloS one.

[34]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[35]  E. Tuomanen,et al.  Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae , 2009, Molecular microbiology.

[36]  C. Dozois,et al.  Roles of the Extraintestinal Pathogenic Escherichia coli ZnuACB and ZupT Zinc Transporters during Urinary Tract Infection , 2008, Infection and Immunity.

[37]  M. Schäfer,et al.  Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method , 2008, BioMetals.

[38]  J. Morrissey,et al.  Iron-Regulated Biofilm Formation in Staphylococcus aureus Newman Requires ica and the Secreted Protein Emp , 2008, Infection and Immunity.

[39]  A. Vella,et al.  Salmonella Flagellin Induces Bystander Activation of Splenic Dendritic Cells and Hinders Bacterial Replication In Vivo1 , 2007, The Journal of Immunology.

[40]  G. Rotilio,et al.  High-Affinity Zn2+ Uptake System ZnuABC Is Required for Bacterial Zinc Homeostasis in Intracellular Environments and Contributes to the Virulence of Salmonella enterica , 2007, Infection and Immunity.

[41]  Maria Anisimova,et al.  Phylogenomic analysis of natural selection pressure in Streptococcus genomes , 2007, BMC Evolutionary Biology.

[42]  C. Knapp,et al.  Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources , 2007, Proceedings of the National Academy of Sciences.

[43]  V. Nizet Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. , 2007, The Journal of allergy and clinical immunology.

[44]  H. Tettelin,et al.  Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. , 2006, Microbiology.

[45]  M. Maguire,et al.  Manganese transport and the role of manganese in virulence. , 2006, Annual review of microbiology.

[46]  Eric P Skaar,et al.  Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability , 2006, PLoS pathogens.

[47]  D. Eide Zinc transporters and the cellular trafficking of zinc. , 2006, Biochimica et biophysica acta.

[48]  Paul Gillingham,et al.  Feo – Transport of Ferrous Iron into Bacteria , 2006, Biometals.

[49]  Jason Hinds,et al.  Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Witney,et al.  Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. , 2005, Microbiology.

[51]  M. Maguire,et al.  The Metal Permease ZupT from Escherichia coli Is a Transporter with a Broad Substrate Spectrum , 2005, Journal of bacteriology.

[52]  D. Heinrichs,et al.  FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus , 2004, Journal of Biological Chemistry.

[53]  H. Baker,et al.  MucA-Mediated Coordination of Type III Secretion and Alginate Synthesis in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[54]  K. Makarova,et al.  Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance , 2004, Science.

[55]  A. C. May,et al.  Specificity and Phenetic Relationships of Iron- and Manganese-containing Superoxide Dismutases on the Basis of Structure and Sequence Comparisons* , 2004, Journal of Biological Chemistry.

[56]  D. Heinrichs,et al.  The Role of FhuD2 in Iron(III)-Hydroxamate Transport in Staphylococcus aureus , 2003, Journal of Biological Chemistry.

[57]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[58]  Eric P. Skaar,et al.  Passage of Heme-Iron Across the Envelope of Staphylococcus aureus , 2003, Science.

[59]  F. Daigle,et al.  Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Charlesworth,et al.  Biological and biomedical implications of the co-evolution of pathogens and their hosts , 2002, Nature Genetics.

[61]  T. Gera,et al.  Effect of iron supplementation on incidence of infectious illness in children: systematic review , 2002, BMJ : British Medical Journal.

[62]  M. Vasil,et al.  Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Hromockyj,et al.  In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. , 2002, Microbiology.

[64]  M. Portnoy,et al.  The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. , 2002, The Biochemical journal.

[65]  C. Rensing,et al.  ZupT Is a Zn(II) Uptake System in Escherichia coli , 2002, Journal of bacteriology.

[66]  Thomas V. O'Halloran,et al.  The Independent cue and cusSystems Confer Copper Tolerance during Aerobic and Anaerobic Growth inEscherichia coli * , 2001, The Journal of Biological Chemistry.

[67]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[68]  A. McEwan,et al.  Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity , 2001, Molecular microbiology.

[69]  Jean-Marie Meyer,et al.  Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species , 2000, Archives of Microbiology.

[70]  S. Michalek,et al.  Genetic Characterization of a Streptococcus mutans LraI Family Operon and Role in Virulence , 2000, Infection and Immunity.

[71]  B. Finlay,et al.  The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen , 2000, Molecular microbiology.

[72]  H. Nitanai,et al.  Impact of Siderophore Production onPseudomonas aeruginosa Infections in Immunosuppressed Mice , 2000, Infection and Immunity.

[73]  J. Helmann,et al.  Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins , 2000, Molecular microbiology.

[74]  R. Perry,et al.  The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague , 1999, Molecular microbiology.

[75]  C. Rensing,et al.  The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. J. Beard,et al.  Zinc(II) tolerance in Escherichia coli K‐12: evidence that the zntA gene (o732) encodes a cation transport ATPase , 1997, Molecular microbiology.

[77]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[78]  V. Braun Avoidance of iron toxicity through regulation of bacterial iron transport. , 1997, Biological chemistry.

[79]  S Falkow,et al.  Copyright © 1997, American Society for Microbiology Common Themes in Microbial Pathogenicity Revisited , 2022 .

[80]  B. R. Levin,et al.  The evolution and maintenance of virulence in microparasites. , 1996, Emerging infectious diseases.

[81]  A. Neely,et al.  Pyoverdin is essential for virulence of Pseudomonas aeruginosa , 1996, Infection and immunity.

[82]  D. Kosman,et al.  Intracellular Mn (II)-associated superoxide scavenging activity protects Cu,Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. , 1989, The Journal of biological chemistry.

[83]  P. Dennis,et al.  Evolution and regulation of the gene encoding superoxide dismutase from the archaebacterium Halobacterium cutirubrum. , 1989, The Journal of biological chemistry.

[84]  J. C. Cook,et al.  Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[85]  I. Fridovich,et al.  Manganese and Defenses against Oxygen Toxicity in Lactobacillus plantarum , 1981, Journal of bacteriology.

[86]  J. Krebs,et al.  Arms races between and within species , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[87]  D. Drabkin,et al.  Metabolism of the hemin chromoproteins. , 1951, Physiological reviews.

[88]  D. Giedroc,et al.  Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. , 2011, Metallomics : integrated biometal science.

[89]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[90]  H. Rüssmann Inverted pathogenicity: the use of pathogen-specific molecular mechanisms for prevention or therapy of disease. , 2004, International journal of medical microbiology : IJMM.

[91]  S. Payne Regulation of Bacterial Toxin Synthesis by Iron , 2003 .