Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area

A global sensitivity analysis method was used to identify the parameters of the Weather Research and Forecasting (WRF) model that exert the most influence on precipitation forecasting. Twenty-three adjustable parameters were selected from seven physical components of the WRF model. The sensitivity was evaluated based on skill scores calculated over nine 5 day precipitation forecasts during the summer seasons from 2008 to 2010 in the Greater Beijing Area in China. We found that eight parameters are more sensitive than others. Storm type seems to have no impact on the list of sensitive parameters but does influence the degree of sensitivity. We also examined the physical interpretation of parameter sensitivity. This analysis is useful for further optimization of the WRF model parameters to improve precipitation forecasting.

[1]  Soroosh Sorooshian,et al.  Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model , 2004 .

[2]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[3]  Da‐Lin Zhang,et al.  A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data , 1982 .

[4]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[5]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[6]  Graeme L. Stephens,et al.  The Parameterization of Radiation for Numerical Weather Prediction and Climate Models , 1984 .

[7]  S. Sorooshian,et al.  Assessing the Impacts of Different WRF Precipitation Physics in Hurricane Simulations , 2012 .

[8]  Hongli Jiang,et al.  Effect of Aerosol on the Susceptibility and Efficiency of Precipitation in Warm Trade Cumulus Clouds , 2010 .

[9]  Soroosh Sorooshian,et al.  Parameter sensitivity analysis for different complexity land surface models using multicriteria methods , 2006 .

[10]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[11]  Guang Lin,et al.  Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model , 2012 .

[12]  D. Stensrud Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models , 2007 .

[13]  Dawei Han,et al.  Exploring the effect of data assimilation by WRF‐3DVar for numerical rainfall prediction with different types of storm events , 2013 .

[14]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[15]  Christa D. Peters-Lidard,et al.  Diagnosing the Sensitivity of Local Land–Atmosphere Coupling via the Soil Moisture–Boundary Layer Interaction , 2011 .

[16]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[17]  Patrick M. Reed,et al.  Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models , 2013 .

[18]  Omar Bellprat,et al.  Exploring Perturbed Physics Ensembles in a Regional Climate Model , 2012 .

[19]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation , 2001 .

[20]  Florence Rabier,et al.  Overview of global data assimilation developments in numerical weather‐prediction centres , 2005 .

[21]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[22]  Sandia Report,et al.  Sensitivity of Precipitation to Parameter Values in the Community Atmosphere Model Version 5 , 2014 .

[23]  Robert C. Gilliam,et al.  Performance Assessment of New Land Surface and Planetary Boundary Layer Physics in the WRF-ARW , 2010 .

[24]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[25]  F. Graziani,et al.  A Practical Global Sensitivity Analysis Methodology for Multi-Physics Applications , 2008 .

[26]  Chengcheng Huang,et al.  On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data , 2014 .

[27]  Wei Gong,et al.  Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis , 2013 .

[28]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[29]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[30]  Wei Chu,et al.  A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model , 2014, Environ. Model. Softw..

[31]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[32]  J. McBride,et al.  Verification of precipitation in weather systems: determination of systematic errors , 2000 .

[33]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[34]  James M. Wilczak,et al.  The Accuracy of Solar Irradiance Calculations Used in Mesoscale Numerical Weather Prediction , 2005 .

[35]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[36]  William R. Cotton,et al.  Simulating convective events using a high‐resolution mesoscale model , 2000 .

[37]  Jimy Dudhia,et al.  Regional Climate–Weather Research and Forecasting Model , 2012 .

[38]  Jimy Dudhia,et al.  A history of mesoscale model development , 2014, Asia-Pacific Journal of Atmospheric Sciences.

[39]  Geir Evensen,et al.  Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .

[40]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[41]  Chris Snyder,et al.  A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment , 2008 .

[42]  Jimy Dudhia,et al.  Four-Dimensional Variational Data Assimilation for WRF : Formulation and Preliminary Results , 2009 .

[43]  Yun Qian,et al.  Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model , 2011 .

[44]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[45]  Efi Foufoula-Georgiou,et al.  Space‐time rainfall organization and its role in validating quantitative precipitation forecasts , 2000 .

[46]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[47]  Juanzhen Sun,et al.  Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002 , 2007 .

[48]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .