Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models

The Southern Ocean is central to the global climate and the global carbon cycle, and to the climate's response to increasing levels of atmospheric greenhouse gases, as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic trend. Due to the region's complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes, and topography. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate and earth system models. New observations and understanding have allowed for progress in the creation of observationally-based data/model metrics for the Southern Ocean. Metrics presented here provide a means to assess multiple simulations relative to the best available observations and observational products. Climate models that perform better according to these metrics also better simulate the uptake of heat and carbon by the Southern Ocean. This report is not strictly an intercomparison, but rather a distillation of key metrics that can reliably quantify the “accuracy” of a simulation against observed, or at least observable, quantities. One overall goal is to recommend standardization of observationally-based benchmarks that the modeling community should aspire to meet in order to reduce uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

[1]  M. Mazloff,et al.  A data assimilating model for estimating Southern Ocean biogeochemistry , 2017 .

[2]  Stephen C. Riser,et al.  Biogeochemical sensor performance in the SOCCOM profiling float array , 2017 .

[3]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[4]  L. Talley,et al.  Zonal Variations in the Southern Ocean Heat Budget , 2016 .

[5]  Sylvain Watelet,et al.  A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2 , 2016 .

[6]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[7]  L. Talley,et al.  Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning , 2016 .

[8]  N. Lovenduski,et al.  Mapping the Antarctic Polar Front: weekly realizations from 2002 to 2014 , 2016 .

[9]  N. Lovenduski,et al.  Mapping the Antarctic Polar Front: Weekly realizations from 2002 to 2014, links to NetCDF file and MPEG4 movie , 2016 .

[10]  H. Hellmer,et al.  A Multidisciplinary Perspective on Climate Model Evaluation For Antarctica , 2016 .

[11]  H. Shiogama,et al.  Predicting future uncertainty constraints on global warming projections , 2016, Scientific Reports.

[12]  P. Gent Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models. , 2016, Annual review of marine science.

[13]  F. F. Pérèz,et al.  GLOBAL OCEAN DATA ANALYSIS PROJECT, VERSION 2 (GLODAPv2) , 2015 .

[14]  R. Slater,et al.  Complex functionality with minimal computation: Promise and pitfalls of reduced‐tracer ocean biogeochemistry models , 2015 .

[15]  C. Sweeney,et al.  Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015) , 2015 .

[16]  Taro Takahashi,et al.  The reinvigoration of the Southern Ocean carbon sink , 2015, Science.

[17]  Simon Read,et al.  ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP , 2015 .

[18]  S. Gille,et al.  Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly , 2015 .

[19]  D. Stevens,et al.  Changes in Global Ocean Bottom Properties and Volume Transports in CMIP5 Models under Climate Change Scenarios , 2015 .

[20]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[21]  John P. Krasting,et al.  Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models , 2015 .

[22]  J. Gregory,et al.  Ocean Heat Uptake Processes: A Model Intercomparison , 2015 .

[23]  E. Galbraith,et al.  Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model , 2014 .

[24]  R. Ferrari,et al.  Direct Estimate of Lateral Eddy Diffusivity Upstream of Drake Passage , 2014 .

[25]  S. Gille Meridional displacement of the Antarctic Circumpolar Current , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  M. P. Chidichimo,et al.  Baroclinic Transport Time Series of the Antarctic Circumpolar Current Measured in Drake Passage , 2014 .

[27]  Young-Gyu Park,et al.  The Relationship of Weddell Polynya and Open-Ocean Deep Convection to the Southern Hemisphere Westerlies , 2014 .

[28]  S. Zaehle,et al.  Challenges and opportunities to reduce uncertainty in projections of future atmospheric CO 2 : a combined marine and terrestrial biosphere perspective , 2014 .

[29]  W. Collins,et al.  Evaluation of climate models , 2013 .

[30]  A. Watson,et al.  Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release , 2013, Nature.

[31]  Jean-Marc Molines,et al.  Eddy compensation and controls of the enhanced sea‐to‐air CO2 flux during positive phases of the Southern Annular Mode , 2013 .

[32]  David P. Stevens,et al.  Southern Ocean bottom water characteristics in CMIP5 models , 2013 .

[33]  T. Roy,et al.  Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response , 2013 .

[34]  T. Bracegirdle,et al.  Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response , 2013 .

[35]  S. Jeffrey,et al.  Australia's CMIP5 submission using the CSIRO-Mk3.6 model , 2013 .

[36]  L. Talley Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports , 2013 .

[37]  David Carlson,et al.  High-latitude ocean and sea ice surface fluxes: requirements and challenges for climate research , 2012 .

[38]  J. Turner,et al.  An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models , 2013 .

[39]  Tony Phillips,et al.  Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence , 2013 .

[40]  Zhaomin Wang,et al.  Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios , 2012 .

[41]  Ron Kwok,et al.  Wind-driven trends in Antarctic sea-ice drift , 2012 .

[42]  K. Trenberth,et al.  A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity , 2012, Science.

[43]  R. Watts,et al.  cDrake: Dynamics and Transport of the Antarctic Circumpolar Current in Drake Passage , 2012 .

[44]  J. Gregory,et al.  Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change , 2012 .

[45]  François Massonnet,et al.  How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent , 2012 .

[46]  J. Fyfe,et al.  Observed and simulated changes in the Southern Hemisphere surface westerly wind‐stress , 2012 .

[47]  S. Jeffrey,et al.  Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations , 2012 .

[48]  Scott C. Doney,et al.  Global ocean storage of anthropogenic carbon , 2012 .

[49]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[50]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[51]  G. Johnson,et al.  Global Contraction of Antarctic Bottom Water between the 1980s and 2000s , 2012 .

[52]  K. Speer,et al.  Closure of the meridional overturning circulation through Southern Ocean upwelling , 2012 .

[53]  Janet Sprintall,et al.  SUSTAINED MONITORING OF THE SOUTHERN OCEAN AT DRAKE PASSAGE: PAST ACHIEVEMENTS AND FUTURE PRIORITIES , 2011 .

[54]  N. Bindoff,et al.  Frontal movements and property fluxes: Contributions to heat and freshwater trends in the Southern Ocean , 2011 .

[55]  D. Thompson,et al.  The influence of Southern Hemisphere sea‐ice extent on the latitude of the mid‐latitude jet stream , 2011 .

[56]  M. Kimoto,et al.  Convective Control of ENSO Simulated in MIROC , 2011 .

[57]  J. Willis,et al.  Future observations for monitoring global ocean heat content , 2010 .

[58]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[59]  A. Hogg An Antarctic Circumpolar Current driven by surface buoyancy forcing , 2010 .

[60]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[61]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[62]  Carl Wunsch,et al.  An Eddy-Permitting Southern Ocean State Estimate , 2010 .

[63]  S. Sokolov,et al.  Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths , 2009 .

[64]  M. England,et al.  Projected Changes to the Southern Hemisphere Ocean and Sea Ice in the IPCC AR4 Climate Models , 2009 .

[65]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[66]  Richard J. Matear,et al.  Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2 , 2008, Proceedings of the National Academy of Sciences.

[67]  Saleem H Ali,et al.  Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2 , 2008, Science.

[68]  S. Rintoul,et al.  The response of the Antarctic Circumpolar Current to recent climate change , 2008 .

[69]  Kevin R. Arrigo,et al.  Coastal Southern Ocean: A strong anthropogenic CO2 sink , 2008 .

[70]  L. Talley Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components , 2008 .

[71]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[72]  J. Toggweiler,et al.  Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2 , 2008 .

[73]  I. Kamenkovich,et al.  Simulation of Subantarctic Mode and Antarctic Intermediate Waters in Climate Models , 2007 .

[74]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[75]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[76]  A. Lenton,et al.  Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake , 2007 .

[77]  S. Sokolov,et al.  Multiple Jets of the Antarctic Circumpolar Current South of Australia , 2007 .

[78]  J. Toggweiler,et al.  The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean , 2006 .

[79]  Robert Hallberg,et al.  The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project , 2006 .

[80]  Janet Sprintall,et al.  Location of the Antarctic Polar Front from AMSR-E Satellite Sea Surface Temperature Measurements , 2006 .

[81]  Keith W. Dixon,et al.  Intercomparison of the Southern Ocean Circulations in IPCC Coupled Model Control Simulations , 2006 .

[82]  R. Stouffer,et al.  Importance of oceanic heat uptake in transient climate change , 2006 .

[83]  J. Toggweiler,et al.  The Southern Ocean biogeochemical divide , 2006, Nature.

[84]  Marika M. Holland,et al.  The Influence of Sea Ice on Ocean Heat Uptake in Response to Increasing CO2 , 2006 .

[85]  J. Toggweiler,et al.  Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages , 2006 .

[86]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[87]  Jeffery R. Scott,et al.  Sensitivity of the Ocean’s Climate to Diapycnal Diffusivity in an EMIC. Part I: Equilibrium State , 2005 .

[88]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[89]  J. Sprintall,et al.  Location of the Polar Front from AMSR-E Satellite Sea Surface Temperature Measurements , 2004 .

[90]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[91]  B. Delille,et al.  Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data , 2004 .

[92]  M. Brandon,et al.  Transport and variability of the Antarctic Circumpolar Current in Drake Passage , 2003 .

[93]  E. Murphy,et al.  Southern ACC Front to the northeast of South Georgia: Pathways, characteristics, and fluxes , 2003 .

[94]  J. Marshall,et al.  Residual-Mean Solutions for the Antarctic Circumpolar Current and Its Associated Overturning Circulation , 2003 .

[95]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[96]  Carl Wunsch,et al.  Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data , 2000, Nature.

[97]  John F. B. Mitchell,et al.  Quantifying the uncertainty in forecasts of anthropogenic climate change , 2000, Nature.

[98]  J. Gregory Vertical heat transports in the ocean and their effect on time-dependent climate change , 2000 .

[99]  A. Weaver,et al.  The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate , 2000 .

[100]  James G. Richman,et al.  Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data , 1999 .

[101]  J. Toggweiler,et al.  On the Ocean’s Large-Scale Circulation near the Limit of No Vertical Mixing , 1998 .

[102]  T. Stocker,et al.  An improved method for detecting anthropogenic CO2 in the oceans , 1996 .

[103]  Carl Wunsch,et al.  An estimate of global ocean circulation and heat fluxes , 1996, Nature.

[104]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[105]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[106]  Syukuro Manabe,et al.  Transient Response of a Global Ocean-Atmosphere Model to a Doubling of Atmospheric Carbon Dioxide , 1990 .

[107]  R. Peterson,et al.  Volume Transport of the Antarctic Circumpolar Current from Bottom Pressure Measurements , 1985 .

[108]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[109]  I. Kamenkovich,et al.  Ocean's Carbon and Heat Uptake: Uncertainties and Metrics , 2015 .

[110]  Corinne Le Quéré,et al.  Carbon and Other Biogeochemical Cycles , 2014 .

[111]  Krista,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics* , 2013 .

[112]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 4, Dissolved inorganic nutrients (phosphate, nitrate, silicate) , 2013 .

[113]  N. Swart The Southern Hemisphere Westerlies and the ocean carbon cycle: the influence of climate model wind biases and human induced changes. , 2013 .

[114]  L. D. Santis,et al.  The Southern Ocean observing system: Initial science and implementation strategy , 2012 .

[115]  Arne Körtzinger,et al.  Optimization of a Membrane-Based NDIR Sensor for Dissolved Carbon Dioxide , 2010 .

[116]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[117]  D. Randall,et al.  Climate models and their evaluation , 2007 .

[118]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[119]  B. Huang,et al.  Sensitivities of deep‐ocean heat uptake and heat content to surface fluxes and subgrid‐scale parameters in an ocean general circulation model with idealized geometry , 2003 .

[120]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[121]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[122]  M. Sakata,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2022 .