Microsatellites: simple sequences with complex evolution

Few genetic markers, if any, have found such widespread use as microsatellites, or simple/short tandem repeats. Features such as hypervariability and ubiquitous occurrence explain their usefulness, but these features also pose several questions. For example, why are microsatellites so abundant, why are they so polymorphic and by what mechanism do they mutate? Most importantly, what governs the intricate balance between the frequent genesis and expansion of simple repetitive arrays, and the fact that microsatellite repeats rarely reach appreciable lengths? In other words, how do microsatellites evolve?

[1]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[2]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[3]  M. Krystal,et al.  A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human δ and β globin genes , 1981 .

[4]  R. Spritz Duplication/deletion polymorphism 5′- to the human β globin gene , 1981 .

[5]  H. Hamada,et al.  Potential Z-DNA forming sequences are highly dispersed in the human genome , 1982, Nature.

[6]  Swee Lay Thein,et al.  Hypervariable ‘minisatellite’ regions in human DNA , 1985, Nature.

[7]  D. Tautz,et al.  Cryptic simplicity in DNA is a major source of genetic variation , 1986, Nature.

[8]  N. Arnheim,et al.  The evolutionarily conserved repetitive sequence d(TG.AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. , 1986, Molecular and cellular biology.

[9]  G. Levinson,et al.  High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12 , 1987, Nucleic Acids Res..

[10]  M. Litt,et al.  A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. , 1989, American journal of human genetics.

[11]  J. Weber,et al.  Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. , 1989, American journal of human genetics.

[12]  D. Tautz Hypervariability of simple sequences as a general source for polymorphic DNA markers. , 1989, Nucleic acids research.

[13]  J. Weber Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. , 1990, Genomics.

[14]  D. Tautz,et al.  Conservation of polymorphic simple sequence loci in cetacean species , 1991, Nature.

[15]  H. Ellegren DNA typing of museum birds , 1991, Nature.

[16]  G. Gyapay,et al.  A second-generation linkage map of the human genome , 1992, Nature.

[17]  T. Petes,et al.  Instability of simple sequence DNA in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[18]  D. Tautz,et al.  Slippage synthesis of simple sequence DNA. , 1992, Nucleic acids research.

[19]  Tomas A. Prolla,et al.  Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair , 1993, Nature.

[20]  E. Boerwinkle,et al.  VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. , 1993, Genetics.

[21]  J. Weber,et al.  Mutation of human short tandem repeats. , 1993, Human molecular genetics.

[22]  M. Litt,et al.  A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. , 1993, Human molecular genetics.

[23]  N. Freimer,et al.  Allele frequencies at microsatellite loci: the stepwise mutation model revisited. , 1993, Genetics.

[24]  L. Andersson,et al.  The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. , 1993, Nucleic acids research.

[25]  V. Murray,et al.  The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. , 1993, Nucleic acids research.

[26]  N. Freimer,et al.  Mutational processes of simple-sequence repeat loci in human populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Cavalli-Sforza,et al.  High resolution of human evolutionary trees with polymorphic microsatellites , 1994, Nature.

[28]  J. Weber,et al.  Alu repeats: a source for the genesis of primate microsatellites. , 1995, Genomics.

[29]  T. Petes,et al.  Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  N. Freimer,et al.  Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. , 1995, Molecular biology and evolution.

[31]  John M. Hancock Simple sequences in a ‘minimal ’ genome , 1996, Nature Genetics.

[32]  William Amos,et al.  Microsatellites show mutational bias and heterozygote instability , 1996, Nature Genetics.

[33]  F. Weissing,et al.  Constraints on allele size at microsatellite loci: implications for genetic differentiation. , 1996, Genetics.

[34]  D. Livingston,et al.  Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[35]  M. Kimmel,et al.  Measures of variation at DNA repeat loci under a general stepwise mutation model. , 1996, Theoretical population biology.

[36]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[37]  W. Messier,et al.  The birth of microsatellites , 1996, Nature.

[38]  M. Kimmel,et al.  Dynamics of repeat polymorphisms under a forward-backward mutation model: within- and between-population variability at microsatellite loci. , 1996, Genetics.

[39]  H. Ellegren,et al.  Directional evolution in germline microsatellite mutations , 1996, Nature Genetics.

[40]  C. Boland,et al.  Transcription-Coupled Repair Deficiency and Mutations in Human Mismatch Repair Genes , 1996, Science.

[41]  A. Jeffreys,et al.  Human minisatellite mutation rate after the Chernobyl accident , 1996, Nature.

[42]  W Stephan,et al.  Allelic diversity in alligator microsatellite loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. , 1996, Molecular biology and evolution.

[43]  M. Feldman,et al.  Microsatellite genetic distances with range constraints: analytic description and problems of estimation. , 1997, Genetics.

[44]  T. Petes,et al.  Microsatellite instability in yeast: dependence on the length of the microsatellite. , 1997, Genetics.

[45]  T. Petes,et al.  Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes , 1997, Molecular and cellular biology.

[46]  J. Jurka,et al.  The Length Distribution of Perfect Dimer Repetitive DNA Is Consistent with Its Evolution by an Unbiased Single-Step Mutation Process , 1997, Journal of Molecular Evolution.

[47]  T. Petes,et al.  Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae. , 1997, Genetics.

[48]  T. Mackay,et al.  Low mutation rates of microsatellite loci in Drosophila melanogaster , 1997, Nature Genetics.

[49]  H. Ellegren,et al.  Fitness loss and germline mutations in barn swallows breeding in Chernobyl , 1997, Nature.

[50]  P. de Knijff,et al.  Estimating Y chromosome specific microsatellite mutation frequencies using deep rooting pedigrees. , 1997, Human molecular genetics.

[51]  D. Pearse,et al.  Phylogenetic assessment of length variation at a microsatellite locus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Gordenin,et al.  Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants , 1997, Molecular and cellular biology.

[53]  L. Bernatchez,et al.  Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. , 1997, Molecular biology and evolution.

[54]  D. Sagher,et al.  Role of proofreading and mismatch repair in maintaining the stability of nucleotide repeats in DNA. , 1997, Nucleic acids research.

[55]  H. Ellegren,et al.  Unraveling the Processes of Microsatellite Evolution Through Analysis of Germ Line Mutations in Barn Swallows Hirundo rustica , 1998 .

[56]  C. Schlötterer,et al.  Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. , 1998, Molecular biology and evolution.

[57]  B Brinkmann,et al.  Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. , 1998, American journal of human genetics.

[58]  R. Durrett,et al.  Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C. Wills,et al.  Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  N. FitzSimmons Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas) , 1998, Molecular ecology.

[61]  H. Ellegren,et al.  Patterns of molecular evolution in avian microsatellites. , 1998, Molecular biology and evolution.

[62]  M W Feldman,et al.  Microsatellite behavior with range constraints: parameter estimation and improved distances for use in phylogenetic reconstruction. , 1998, Theoretical population biology.

[63]  F. Breden,et al.  The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. , 1999, Molecular biology and evolution.

[64]  R. Farber,et al.  Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells. , 1999, Human molecular genetics.

[65]  B. Kaufmann,et al.  Mutability of microsatellites developed for the ant Camponotus consobrinus , 1999, Molecular ecology.

[66]  D. Rand,et al.  Markov chain Monte Carlo analysis of human Y-chromosome microsatellites provides evidence of biased mutation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Single-locus tests of microsatellite evolution: multi-step mutations and constraints on allele size. , 1999, Molecular phylogenetics and evolution.

[68]  D. Sagher,et al.  Stabilization of the intermediate in frameshift mutation. , 1999, Mutation research.

[69]  M. Morgante,et al.  Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. , 1999, The Plant journal : for cell and molecular biology.

[70]  E. Knapik,et al.  Zebrafish genetic map with 2000 microsatellite markers. , 1999, Genomics.

[71]  D. Goldstein,et al.  Evidence for complex mutations at microsatellite loci in Drosophila. , 1999, Genetics.

[72]  R. Farber,et al.  Relative rates of insertion and deletion mutations in a microsatellite sequence in cultured cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[73]  C. Schlötterer,et al.  Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. , 1999, Molecular biology and evolution.

[74]  L. Zhivotovsky,et al.  A new genetic distance with application to constrained variation at microsatellite loci. , 1999, Molecular biology and evolution.

[75]  A. Jones,et al.  Clustered microsatellite mutations in the pipefish Syngnathus typhle. , 1999, Genetics.

[76]  A Sajantila,et al.  Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. , 2000, American journal of human genetics.

[77]  C. Schlötterer,et al.  Removal of microsatellite interruptions by DNA replication slippage: phylogenetic evidence from Drosophila. , 2000, Molecular biology and evolution.

[78]  J. Strassmann,et al.  Insertions, substitutions, and the origin of microsatellites. , 2000, Genetical research.

[79]  Mei Peng,et al.  The direction of microsatellite mutations is dependent upon allele length , 2000, Nature Genetics.

[80]  B. Harfe,et al.  Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. , 2000, Genetics.

[81]  K. Eckert,et al.  Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis. , 2000, Nucleic acids research.

[82]  J. Jurka,et al.  Microsatellites in different eukaryotic genomes: survey and analysis. , 2000, Genome research.

[83]  H. Ellegren Microsatellite mutations in the germline: implications for evolutionary inference. , 2000, Trends in genetics : TIG.

[84]  Bayesian estimation of range for microsatellite loci. , 2000, Genetical research.

[85]  J. Ott,et al.  GT repeats are associated with recombination on human chromosome 22. , 2000, Genome research.

[86]  C. Aquadro,et al.  High density of long dinucleotide microsatellites in Drosophila subobscura. , 2000, Molecular biology and evolution.

[87]  David Metzgar,et al.  Evidence for the Adaptive Evolution of Mutation Rates , 2000, Cell.

[88]  Gardner,et al.  Microsatellite mutations in litters of the Australian lizard Egernia stokesii , 2000 .

[89]  Hans Ellegren,et al.  Heterogeneous mutation processes in human microsatellite DNA sequences , 2000, Nature Genetics.

[90]  C. Schlötterer,et al.  Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. , 2000, Genetics.

[91]  C. Schlötterer,et al.  Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. , 2000, Molecular biology and evolution.

[92]  K. Eckert,et al.  Somatic mutation rates and specificities at TC/AG and GT/CA microsatellite sequences in nontumorigenic human lymphoblastoid cells. , 2000, Cancer research.

[93]  S. Farrington,et al.  Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair-deficient cells. , 2000, Human molecular genetics.

[94]  C. Schlötterer,et al.  Drosophila virilis has long and highly polymorphic microsatellites. , 2000, Molecular biology and evolution.

[95]  The microsatellites of Escherichia coli: rapidly evolving repetitive DNAs in a non‐pathogenic prokaryote , 2001, Molecular microbiology.

[96]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[97]  L. Lipovich,et al.  Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. , 2001, Genome research.

[98]  B Brinkmann,et al.  Mutation rates at two human Y-chromosomal microsatellite loci using small pool PCR techniques. , 2001, Human molecular genetics.

[99]  John M. Hancock,et al.  A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. , 2001, Molecular biology and evolution.

[100]  M. Kimmel,et al.  DNA dinucleotide evolution in humans: fitting theory to facts. , 2001, Genetics.

[101]  M. V. Katti,et al.  Differential distribution of simple sequence repeats in eukaryotic genome sequences. , 2001, Molecular biology and evolution.

[102]  J Wilder,et al.  Mobile elements and the genesis of microsatellites in dipterans. , 2001, Molecular biology and evolution.

[103]  R. Durrett,et al.  Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models. , 2001, Genetics.

[104]  A. Dawid,et al.  Non-fatherhood or mutation? A probabilistic approach to parental exclusion in paternity testing. , 2001, Forensic science international.

[105]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[106]  M. Morgante,et al.  Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes , 2002, Nature Genetics.

[107]  N. Yamada,et al.  Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells. , 2002, Mutation research.

[108]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[109]  Hui Shen,et al.  Mutation patterns at dinucleotide microsatellite loci in humans. , 2002, American journal of human genetics.

[110]  David Metzgar,et al.  Domain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations. , 2002, Genome research.

[111]  C. Schlötterer,et al.  Mismatch repair-driven mutational bias in D. melanogaster. , 2002, Molecular cell.

[112]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[113]  H. Ellegren,et al.  Microsatellite evolution inferred from human– chimpanzee genomic sequence alignments , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[114]  H. Ellegren,et al.  Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. , 2002, Nucleic acids research.

[115]  Arnaud Estoup,et al.  Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis , 2002, Molecular ecology.

[116]  N. Yamada,et al.  Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. , 2002, Human molecular genetics.

[117]  Christian Schlötterer,et al.  Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. , 2003, Genome research.

[118]  Andréia M Leopoldino,et al.  The mutational spectrum of human autosomal tetranucleotide microsatellites , 2003, Human mutation.

[119]  A. Cockburn,et al.  Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. , 2003, Molecular biology and evolution.

[120]  T. S. Wang,et al.  Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. , 2003, Genetics.

[121]  H. Cederberg,et al.  Two modes of germline instability at human minisatellite MS1 (locus D1S7): complex rearrangements and paradoxical hyperdeletion. , 2003, American journal of human genetics.

[122]  R. Durrett,et al.  Dinucleotide repeats in the Drosophila and human genomes have complex, length-dependent mutation processes. , 2003, Molecular biology and evolution.

[123]  R. Sibly,et al.  Likelihood-based estimation of microsatellite mutation rates. , 2003, Genetics.

[124]  B. Hohn,et al.  Extremely complex pattern of microsatellite mutation in the germline of wheat exposed to the post-Chernobyl radioactive contamination. , 2003, Mutation research.

[125]  H. Ellegren,et al.  Mutation rate variation in the mammalian genome. , 2003, Current opinion in genetics & development.

[126]  R. Sibly,et al.  The structure of interrupted human AC microsatellites. , 2003, Molecular biology and evolution.

[127]  K. Tokunaga,et al.  Power of genome-wide linkage disequilibrium testing by using microsatellite markers , 2003, Journal of Human Genetics.

[128]  C. Hutter,et al.  Directional evolution of size coupled with ascertainment bias for variation in Drosophila microsatellites. , 2003, Molecular biology and evolution.

[129]  C. Schlötterer Hitchhiking mapping--functional genomics from the population genetics perspective. , 2003, Trends in genetics : TIG.

[130]  Fengzhu Sun,et al.  Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. , 2003, Nucleic acids research.

[131]  K. Eckert,et al.  Positive correlation between DNA polymerase alpha-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. , 2004, Journal of molecular biology.

[132]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[133]  B. Olaisen,et al.  Y‐chromosomal microsatellite mutation rates: Differences in mutation rate between and within loci , 2004 .

[134]  T. Egeland,et al.  Y‐chromosomal microsatellite mutation rates: Differences in mutation rate between and within loci , 2004, Human mutation.

[135]  H. Ellegren,et al.  Single-molecule analysis of the hypermutable tetranucleotide repeat locus D21S1245 through sperm genotyping: a heterogeneous pattern of mutation but no clear male age effect. , 2003, Molecular biology and evolution.

[136]  R. Guigó,et al.  Comparative analysis of amino acid repeats in rodents and humans. , 2004, Genome research.