Septins: the fourth component of the cytoskeleton

[1]  W. Garcia,et al.  Septin C-Terminal Domain Interactions: Implications for Filament Stability and Assembly , 2012, Cell Biochemistry and Biophysics.

[2]  G. Hickson,et al.  Anillin Acts as a Bifunctional Linker Coordinating Midbody Ring Biogenesis during Cytokinesis , 2012, Current Biology.

[3]  E. Nogales,et al.  Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae , 2012, Molecular biology of the cell.

[4]  D. Rubinsztein,et al.  Mechanisms of Autophagosome Biogenesis , 2012, Current Biology.

[5]  M. Krummel,et al.  The septin cytoskeleton facilitates membrane retraction during motility and blebbing , 2012, The Journal of cell biology.

[6]  Colin A. Johnson,et al.  CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium , 2011, Nature Genetics.

[7]  Ben Chih,et al.  A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain , 2011, Nature Cell Biology.

[8]  E. Nogales,et al.  Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation , 2011, The Journal of cell biology.

[9]  M. Gullberg,et al.  Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells , 2011, Molecular biology of the cell.

[10]  W. Trimble,et al.  SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission , 2011, The Journal of cell biology.

[11]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[12]  Y. Barral,et al.  The emerging functions of septins in metazoans , 2011, EMBO reports.

[13]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[14]  M. Welch,et al.  Pathogens and polymers: Microbe–host interactions illuminate the cytoskeleton , 2011, The Journal of cell biology.

[15]  M. Gullberg,et al.  Deciphering the rules governing assembly order of mammalian septin complexes , 2011, Molecular biology of the cell.

[16]  A. Kusumi,et al.  Submembranous septins as relatively stable components of actin‐based membrane skeleton , 2011, Cytoskeleton.

[17]  E. Bi,et al.  Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast , 2011, Biological chemistry.

[18]  J. Pringle,et al.  New insights into the phylogenetic distribution and evolutionary origins of the septins , 2011, Biological chemistry.

[19]  C. Montagna,et al.  Septin roles in tumorigenesis , 2011, Biological chemistry.

[20]  P. Hall,et al.  Septin genomics: a road less travelled , 2011, Biological chemistry.

[21]  I. Vetter,et al.  Structural and biochemical properties of Sept7, a unique septin required for filament formation , 2011, Biological chemistry.

[22]  B. Zieger,et al.  Characterization of human septin interactions , 2011, Biological chemistry.

[23]  Dheeraj S. Roy,et al.  Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia , 2011, The Journal of cell biology.

[24]  Xuejun Jiang,et al.  SNARE Proteins Are Required for Macroautophagy , 2011, Cell.

[25]  D. Rubinsztein,et al.  Autophagosome Precursor Maturation Requires Homotypic Fusion , 2011, Cell.

[26]  I. Vetter,et al.  Structure-function relationships of the G domain, a canonical switch motif. , 2011, Annual review of biochemistry.

[27]  Rudolf Oldenbourg,et al.  Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals , 2011, The Journal of cell biology.

[28]  P. Cossart,et al.  p62 and NDP52 Proteins Target Intracytosolic Shigella and Listeria to Different Autophagy Pathways , 2011, The Journal of Biological Chemistry.

[29]  P. Cossart,et al.  A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. , 2011, Biophysical journal.

[30]  E. Nogales,et al.  Septin filament formation is essential in budding yeast. , 2011, Developmental cell.

[31]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[32]  Patricia Grob,et al.  Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. , 2010, Journal of molecular biology.

[33]  Pascale Cossart,et al.  Pathogen-Mediated Posttranslational Modifications: A Re-emerging Field , 2010, Cell.

[34]  C. Zimmer,et al.  Entrapment of intracytosolic bacteria by septin cage-like structures. , 2010, Cell host & microbe.

[35]  W. Trimble,et al.  Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission , 2010, The Journal of cell biology.

[36]  J. Kobarg,et al.  A Draft of the Human Septin Interactome , 2010, PloS one.

[37]  M. Srayko,et al.  Meiotic kinetochores get pushed aside by a CLS act , 2010, Nature Cell Biology.

[38]  Colin A. Johnson,et al.  Planar Cell Polarity Acts Through Septins to Control Collective Cell Movement and Ciliogenesis , 2010, Science.

[39]  T. Yoshimori,et al.  The origin of the autophagosomal membrane , 2010, Nature Cell Biology.

[40]  M. Scott,et al.  A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution , 2010, Science.

[41]  D. Rubinsztein,et al.  Plasma membrane contributes to the formation of pre-autophagosomal structures , 2010, Nature Cell Biology.

[42]  Emma M. Petty,et al.  Conquering the complex world of human septins: implications for health and disease , 2010, Clinical genetics.

[43]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[44]  J. Taylor,et al.  HDAC6 controls autophagosome maturation essential for ubiquitin‐selective quality‐control autophagy , 2010, The EMBO journal.

[45]  A. Marchiando,et al.  Epithelial barriers in homeostasis and disease. , 2010, Annual review of pathology.

[46]  S. Tooze,et al.  The EmERgence of autophagosomes. , 2009, Developmental cell.

[47]  C. Sasakawa,et al.  Listeria monocytogenes ActA-mediated escape from autophagic recognition , 2009, Nature Cell Biology.

[48]  P. Cossart,et al.  Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. , 2009, Cell motility and the cytoskeleton.

[49]  A. Wittinghofer,et al.  GTP-induced conformational changes in septins and implications for function , 2009, Proceedings of the National Academy of Sciences.

[50]  J. Thorner,et al.  Septins: molecular partitioning and the generation of cellular asymmetry , 2009, Cell Division.

[51]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[52]  S. Guadagnini,et al.  Septin 11 Restricts InlB-mediated Invasion by Listeria , 2009, Journal of Biological Chemistry.

[53]  Y. Barral,et al.  Septins and the lateral compartmentalization of eukaryotic membranes. , 2009, Developmental cell.

[54]  K. Takiguchi,et al.  Septin-Mediated Uniform Bracing of Phospholipid Membranes , 2009, Current Biology.

[55]  S. Guadagnini,et al.  Septins Regulate Bacterial Entry into Host Cells , 2009, PloS one.

[56]  B. Finlay,et al.  Structural microengineers: pathogenic Escherichia coli redesigns the actin cytoskeleton in host cells. , 2009, Structure.

[57]  P. Hall,et al.  Septins and Human Disease , 2008 .

[58]  W. Nelson,et al.  Septin Functions in the Mammalian Cytoskeleton , 2008 .

[59]  W. Nelson,et al.  Forchlorfenuron Alters Mammalian Septin Assembly, Organization, and Dynamics* , 2008, Journal of Biological Chemistry.

[60]  P. Cossart,et al.  The actin propulsive machinery: the proteome of Listeria monocytogenes tails. , 2008, Biochemical and biophysical research communications.

[61]  W. Trimble,et al.  Amoeboid T lymphocytes Require the Septin Cytoskeleton for Cortical Integrity and Persistent Motility , 2008, Nature Cell Biology.

[62]  J. Thorner,et al.  Septin Stability and Recycling during Dynamic Structural Transitions in Cell Division and Development , 2008, Current Biology.

[63]  R. Valdivia,et al.  Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. , 2008, Cell host & microbe.

[64]  Yves Barral,et al.  A mechanism for asymmetric segregation of age during yeast budding , 2008, Nature.

[65]  Xia Ding,et al.  Septin 7 Interacts with Centromere-associated Protein E and Is Required for Its Kinetochore Localization* , 2008, Journal of Biological Chemistry.

[66]  Tom Alber,et al.  Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly , 2008, Proceedings of the National Academy of Sciences.

[67]  Y. Barral,et al.  The septin family of GTPases: architecture and dynamics , 2008, Nature Reviews Molecular Cell Biology.

[68]  W. Albers,et al.  Cyclin-Dependent Kinase 5 Phosphorylation of Human Septin SEPT5 (hCDCrel-1) Modulates Exocytosis , 2008, The Journal of Neuroscience.

[69]  Ming Yan,et al.  Mammalian septins are required for phagosome formation. , 2008, Molecular biology of the cell.

[70]  M. Kinoshita,et al.  Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules , 2008, The Journal of cell biology.

[71]  P. O’Farrell,et al.  Rho-dependent control of anillin behavior during cytokinesis , 2008, The Journal of cell biology.

[72]  Wenbo Yu,et al.  Phylogenetic and evolutionary analysis of the septin protein family in metazoan , 2007, FEBS letters.

[73]  W. Trimble,et al.  Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. , 2007, Developmental cell.

[74]  M. Sheng,et al.  Role of Septin Cytoskeleton in Spine Morphogenesis and Dendrite Development in Neurons , 2007, Current Biology.

[75]  M. Kiebler,et al.  The GTP-Binding Protein Septin 7 Is Critical for Dendrite Branching and Dendritic-Spine Morphology , 2007, Current Biology.

[76]  H. Stark,et al.  Structural insight into filament formation by mammalian septins. , 2007, Nature.

[77]  I. Macara,et al.  Septins Regulate Actin Organization and Cell-Cycle Arrest through Nuclear Accumulation of NCK Mediated by SOCS7 , 2007, Cell.

[78]  M. Steinmetz,et al.  The Caenorhabditis elegans septin complex is nonpolar , 2007, The EMBO journal.

[79]  M. Momany,et al.  Analysis of septins across kingdoms reveals orthology and new motifs , 2007, BMC Evolutionary Biology.

[80]  D. Billadeau,et al.  Regulation of T-cell activation by the cytoskeleton , 2007, Nature Reviews Immunology.

[81]  T. Mitchison,et al.  Structural insights into yeast septin organization from polarized fluorescence microscopy , 2006, Nature.

[82]  Yu-Ling Shih,et al.  The Bacterial Cytoskeleton , 2006, Microbiology and Molecular Biology Reviews.

[83]  J. Reiter,et al.  The Primary Cilium as the Cell's Antenna: Signaling at a Sensory Organelle , 2006, Science.

[84]  M. Kinoshita Diversity of septin scaffolds. , 2006, Current opinion in cell biology.

[85]  T. Haystead,et al.  Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. , 2005, Molecular biology of the cell.

[86]  J. Thorner,et al.  Some assembly required: yeast septins provide the instruction manual. , 2005, Trends in cell biology.

[87]  W. Trimble,et al.  Septins: Traffic Control at the Cytokinesis Intersection , 2005, Traffic.

[88]  Heinz Schwarz,et al.  Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth , 2005, The Journal of cell biology.

[89]  M. Sheetz,et al.  Mitochondrial Function and Actin Regulate Dynamin-Related Protein 1-Dependent Mitochondrial Fission , 2005, Current Biology.

[90]  Makoto Kinoshita,et al.  A Mitotic Septin Scaffold Required for Mammalian Chromosome Congression and Segregation , 2005, Science.

[91]  K. Manova,et al.  The Sept4 septin locus is required for sperm terminal differentiation in mice. , 2005, Developmental cell.

[92]  S. Itohara,et al.  Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. , 2005, Developmental cell.

[93]  Hiroshi Sagara,et al.  Escape of Intracellular Shigella from Autophagy , 2005, Science.

[94]  P. Cossart,et al.  Actin-based motility of intracellular pathogens. , 2005, Current opinion in microbiology.

[95]  W. Trimble,et al.  The septin Sept5/CDCrel-1 competes with α-SNAP for binding to the SNARE complex , 2005 .

[96]  P. Hall,et al.  The pathobiology of the septin gene family , 2004, The Journal of pathology.

[97]  Pascale Cossart,et al.  Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens , 2004, Science.

[98]  J. Thorner,et al.  Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4 , 2004, The Journal of cell biology.

[99]  S. Gygi,et al.  The Majority of the Saccharomyces cerevisiae Septin Complexes Do Not Exchange Guanine Nucleotides* , 2004, Journal of Biological Chemistry.

[100]  Masahiko Watanabe,et al.  Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[101]  M. Kinoshita The septins , 2003, Genome Biology.

[102]  K. Nagata,et al.  Filament Formation of MSF-A, a Mammalian Septin, in Human Mammary Epithelial Cells Depends on Interactions with Microtubules* , 2003, The Journal of Biological Chemistry.

[103]  Matthew S. Gentry,et al.  Phosphorylation-dependent regulation of septin dynamics during the cell cycle. , 2003, Developmental cell.

[104]  Irving E. Vega,et al.  The septin protein Nedd5 associates with both the exocyst complex and microtubules and disruption of its GTPase activity promotes aberrant neurite sprouting in PC12 cells , 2003, Neuroreport.

[105]  A. Straight,et al.  Self- and actin-templated assembly of Mammalian septins. , 2002, Developmental cell.

[106]  T. Mitchison,et al.  Cytoskeleton: What Does GTP Do for Septins? , 2002, Current Biology.

[107]  A. Hyman,et al.  GTP Binding Induces Filament Assembly of a Recombinant Septin , 2002, Current Biology.

[108]  W. Trimble,et al.  The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. , 2002, Molecular biology of the cell.

[109]  J. Yates,et al.  Cell cycle-dependent assembly of a Gin4-septin complex. , 2002, Molecular biology of the cell.

[110]  Detlef D. Leipe,et al.  Classification and evolution of P-loop GTPases and related ATPases. , 2002, Journal of molecular biology.

[111]  M. Kinoshita,et al.  Roles of septins in the mammalian cytokinesis machinery. , 2001, Cell structure and function.

[112]  J. Pringle,et al.  The septin cortex at the yeast mother-bud neck. , 2001, Current opinion in microbiology.

[113]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[114]  T. Haystead,et al.  Borg proteins control septin organization and are negatively regulated by Cdc42 , 2001, Nature Cell Biology.

[115]  Erica S. Johnson,et al.  An E3-like Factor that Promotes SUMO Conjugation to the Yeast Septins , 2001, Cell.

[116]  T. Dawson,et al.  Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[117]  J. Derisi,et al.  Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. , 2000, Science.

[118]  K. Oegema,et al.  Functional Analysis of a Human Homologue of the Drosophila Actin Binding Protein Anillin Suggests a Role in Cytokinesis , 2000, The Journal of cell biology.

[119]  M. Snyder,et al.  Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. , 2000, Molecular cell.

[120]  G. Blobel,et al.  Cell Cycle–Regulated Attachment of the Ubiquitin-Related Protein Sumo to the Yeast Septins , 1999, The Journal of cell biology.

[121]  Marie-France Carlier,et al.  Reconstitution of actin-based motility of Listeria and Shigella using pure proteins , 1999, Nature.

[122]  R. Bowser,et al.  The septin CDCrel-1 binds syntaxin and inhibits exocytosis , 1999, Nature Neuroscience.

[123]  M. Snyder,et al.  Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. , 1999, Genes & development.

[124]  R. Scheller,et al.  Subunit Composition, Protein Interactions, and Structures of the Mammalian Brain sec6/8 Complex and Septin Filaments , 1998, Neuron.

[125]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[126]  B. Haarer,et al.  Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site , 1991, The Journal of cell biology.

[127]  B. Haarer,et al.  Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck , 1987, Molecular and cellular biology.

[128]  B. Byers,et al.  A highly ordered ring of membrane-associated filaments in budding yeast , 1976, The Journal of cell biology.

[129]  L. Hartwell,et al.  Genetic control of the cell division cycle in yeast. , 1974, Science.

[130]  L. Hartwell Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. , 1971, Experimental cell research.

[131]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.