Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model.

Using a newly developed perfused rat brain model, we examined direct effects of each change in cerebral blood flow (CBF) and oxygen metabolic rate on cerebral hemoglobin oxygenation to interpret near-infrared spectroscopy signals. Changes in CBF and total hemoglobin (tHb) were in parallel, although tHb showed no change when changes in CBF were small (< or =10%). Increasing CBF caused an increase in oxygenated hemoglobin (HbO(2)) and a decrease in deoxygenated hemoglobin (deoxy-Hb). Decreasing CBF was accompanied by a decrease in HbO(2), whereas changes in direction of deoxy-Hb were various. Cerebral blood congestion caused increases in HbO(2), deoxy-Hb, and tHb. Administration of pentylenetetrazole without increasing the flow rate caused increases in HbO(2) and tHb with a decrease in deoxy-Hb. There were no significant differences in venous oxygen saturation before vs. during seizure. These results suggest that, in activation studies with near-infrared spectroscopy, HbO(2) is the most sensitive indicator of changes in CBF, and the direction of changes in deoxy-Hb is determined by the degree of changes in venous blood oxygenation and volume.

[1]  M. Crommelinck,et al.  Effect of Familiarity on the Processing of Human Faces , 1999, NeuroImage.

[2]  M. Tamura,et al.  Redox behavior of cytochrome oxidase in the rat brain measured by near-infrared spectroscopy. , 1997, Journal of applied physiology.

[3]  A. Kleinschmidt,et al.  Simultaneous Recording of Cerebral Blood Oxygenation Changes during Human Brain Activation by Magnetic Resonance Imaging and Near-Infrared Spectroscopy , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  C. Rovainen,et al.  Journal of Cerebral Blood Flow and Metabolism Localized Dynamic Changes in Cortical Blood Flow with Whisker Stimulation Corresponds to Matched Vascular and Neuronal Architecture of Rat Barrels , 2022 .

[5]  M. Tamura,et al.  Dynamic multichannel near-infrared optical imaging of human brain activity. , 1993, Journal of applied physiology.

[6]  K Pettigrew,et al.  Hypoxia Increases Velocity of Blood Flow through Parenchymal Microvascular Systems in Rat Brain , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  S. Takashima,et al.  Journal of Cerebral Blood Flow and Metabolism Human Visual Cortical Function during Photic Stimulation Monitoring by Means of Near-infrared Spectroscopy Subjects and Methods , 2022 .

[8]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  A. Ngai,et al.  Effect of sciatic nerve stimulation on pial arterioles in rats. , 1988, The American journal of physiology.

[10]  M. Raichle,et al.  Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Y. Ben-Ari,et al.  Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy , 1981, Neuroscience.

[12]  F. Jöbsis Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. , 1977, Science.

[13]  R. Andjus,et al.  An isolated, perfused rat brain preparation, its spontaneous and stimulated activity. , 1967, Journal of applied physiology.