Lyapunov dimension formulas for Lorenz-like systems
暂无分享,去创建一个
[1] J. Yorke,et al. Dimension of chaotic attractors , 1982 .
[2] V. Boichenko,et al. Dimension theory for ordinary differential equations , 2005 .
[3] A. Eden. Local estimates for the Hausdorff dimension of an attractor , 1990 .
[4] R. Temam,et al. Local and Global Lyapunov exponents , 1991 .
[5] P. Grassberger,et al. Measuring the Strangeness of Strange Attractors , 1983 .
[6] G. Leonov,et al. Attraktorlokalisierung des Lorenz-Systems , 1987 .
[7] Gennady A. Leonov,et al. The dimension formula for the Lorenz attractor , 2011 .
[8] Gennady A. Leonov,et al. Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system , 2013 .
[9] G. Leonov,et al. Lyapunov’s direct method in estimates of topological entropy , 1998 .
[10] J. Yorke,et al. Chaotic behavior of multidimensional difference equations , 1979 .
[11] Nikolay V. Kuznetsov,et al. Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu-Morioka System , 2015, Entropy.
[12] Brian R. Hunt,et al. Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors , 1996 .
[13] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[14] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[15] Gennady A. Leonov,et al. Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors , 1992 .
[16] James A. Yorke,et al. The Lyapunov dimension of a nowhere differentiable attracting torus , 1984, Ergodic Theory and Dynamical Systems.
[17] Gennady A. Leonov,et al. Fishing principle for homoclinic and heteroclinic trajectories , 2014 .
[18] G. A. Leonov,et al. Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..
[19] G. Leonov. Strange attractors and classical stability theory , 2006 .
[20] R. A. Smith,et al. Some applications of Hausdorff dimension inequalities for ordinary differential equations , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[21] A. Thomas. Dimension de Hausdorff , 1974 .
[22] Charles R. Doering,et al. On the shape and dimension of the Lorenz attractor , 1995 .
[23] E. Dinaburg. ON THE RELATIONS AMONG VARIOUS ENTROPY CHARACTERISTICS OF DYNAMICAL SYSTEMS , 1971 .
[24] Gennady A. Leonov,et al. Erratum to “The dimension formula for the Lorenz attractor” [Phys. Lett. A 375 (8) (2011) 1179] , 2012 .
[25] Roy L. Adler,et al. Topological entropy , 2008, Scholarpedia.
[26] Nikolay V. Kuznetsov,et al. Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.
[27] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[28] Ya. G. Sinai,et al. On the Notion of Entropy of a Dynamical System , 2010 .
[29] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[30] N. Kuznetsov,et al. The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.
[31] N. A. Izobov. Lyapunov exponents and stability , 2012 .
[32] R. Temam,et al. Attractors Representing Turbulent Flows , 1985 .
[33] L. Barreira,et al. Dimension estimates in smooth dynamics: a survey of recent results , 2010, Ergodic Theory and Dynamical Systems.
[34] F. Ledrappier,et al. Some relations between dimension and Lyapounov exponents , 1981 .
[35] M. Kunze,et al. Non-Smooth Dynamical Systems: An Overview , 2001 .
[36] Gennady A. Leonov,et al. Lyapunov functions in the attractors dimension theory , 2012 .
[37] G. A. Leonov,et al. Lyapunov dimension formula of attractors in the Tigan and Yang systems , 2015, 1510.01492.
[38] Lyapunov dimension formula for the attractor of the Glukhovsky–Dolzhansky system , 2016 .