Ionomeric electroactive polymer artificial muscle for naval applications

Specialized propulsors for naval applications have numerous opportunities in terms of research, design, and fabrication of an appropriate propulsor. One of the most important components of any propulsor is the actuator that provides the mode of locomotion. ionomeric electroactive polymer may offer an attractive solution for locomotion of small propulsors. A common ionomeric electroactive polymer, ionic polymer-metal composites (IPMCs) give large true bending deformations under low driving voltages, operate in aqueous environments, are capable of transduction, and are relatively well understood. IPMC fabrication and operation are presented to further elucidate the use of the material for a propulsor. Various materials, including IPMCs, are investigated and a simplified propulsor model is explored.

[1]  Pierre Millet,et al.  New solid polymer electrolyte composites for water electrolysis , 1989 .

[2]  A. Katchalsky,et al.  Verhalten polyvalenter Fadenmolekelionen in Lösung , 1948 .

[3]  Satoshi Tadokoro,et al.  Modeling IPMC for Design of Actuation Mechanisms , 2004 .

[4]  Eniko T. Enikov,et al.  Electrotransport and deformation model of ion exchange membrane-based actuators , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  K. Newbury,et al.  Characterization, Modeling, and Control of Ionic Polymer Transducers , 2002 .

[6]  Mohsen Shahinpoor,et al.  Ionic polymer-metal composites as multifunctional materials , 2003 .

[7]  W. Kuhn,et al.  Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks , 1950, Nature.

[8]  M. Shahinpoor Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles , 1992 .

[9]  Robert J. Full,et al.  Artificial muscles versus natural actuators from frogs to flies , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  Moe W. Rosen Water flow about a swimming fish , 1959 .

[11]  K. Oguro,et al.  Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane–platinum composite , 1998 .

[12]  Donald J. Leo,et al.  Feedback control of the bending response of ionic polymer-metal composite actuators , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  K. Kim,et al.  Ionic polymer–metal composites: II. Manufacturing techniques , 2003 .

[14]  K. Oguro,et al.  Bending of Polyelectrolyte Membrane–Platinum Composites by Electric Stimuli I. Response Characteristics to Various Waveforms , 1995 .

[15]  A. Eisenberg,et al.  Coulombic Interactions in Macromolecular Systems , 1986 .

[16]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[17]  R. Baughman Conducting polymer artificial muscles , 1996 .

[18]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[19]  Mohsen Shahinpoor,et al.  Mass Transfer Induced Hydraulic Actuation in Ionic Polymer-Metal Composites , 2002 .

[20]  R. Hamlen,et al.  Electrolytically Activated Contractile Polymer , 1965, Nature.

[21]  W. Kuhn,et al.  Reversible Dehnung und Kontraktion bei Änderung der Ionisation eines Netzwerks polyvalenter Fadenmolekülionen , 1949, Experientia.

[22]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[23]  B. Theng The Chemistry of Clay-Organic Reactions , 2024 .

[24]  A. Eisenberg,et al.  Ions in Polymers , 1980 .

[25]  Mohsen Shahinpoor,et al.  Mechanoelectric effects in ionic gels , 2000 .

[26]  Mohsen Shahinpoor,et al.  Novel physically loaded and interlocked electrode developed for ionic polymer-metal composites (IPMCs) , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[27]  Gérard Gebel,et al.  Structure and related properties of solution-cast perfluorosulfonated ionomer films , 1987 .

[28]  S. Hanna,et al.  Hydration of Nafion® studied by AFM and X-ray scattering , 2000 .

[29]  モーゼン シャインプア,et al.  Soft actuators and artificial muscles , 1996 .

[30]  Yu Xiao,et al.  Modeling electromechanical properties of ionic polymers , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[31]  Hiromichi Kawai,et al.  Structure of Sulfonated and Carboxylated Perfluorinated Ionomer Membranes: Small-Angle and Wide-Angle X-Ray Scattering and Light Scattering , 1982 .

[32]  Zhong-Yang Cheng,et al.  Electromechanical behavior of electroactive P(VDF-TrFE) copolymers , 1999, Smart Structures.

[33]  Toshi Takamori,et al.  Distributed Actuation Devices Using Soft Gel Actuators , 2000 .

[34]  Mohsen Shahinpoor,et al.  Experimental Study of Ionic Polymer-Metal Composites in Various Cation Forms: Actuation Behavior , 2002 .

[35]  Byungkyu Kim,et al.  Tadpole Robot (TadRob) using ionic polymer metal composite (IPMC) actuator , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[36]  Steven G. Wax,et al.  Electroactive polymer actuators and devices , 1999, Smart Structures.

[37]  W. Kuhn,et al.  Muskelähnliche Kontraktion und Dehnung von Netzwerken polyvalenter Fadenmolekülionen , 1951, Experientia.

[38]  K. Kim,et al.  A novel method of manufacturing three-dimensional ionic polymer–metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles , 2002 .

[39]  H. Yeager,et al.  Perfluorinated Ionomer Membranes , 1982 .

[40]  K. Sadeghipour,et al.  Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper , 1992 .

[41]  Jaedo Nam,et al.  Development of electroactive silicate nanocomposites prepared for use as ionic polymer-metal composites (IPMCs) artificial muscles and sensors , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[42]  Kaushik Bhattacharya,et al.  Electromechanical Models for Optimal Design and Effective Behavior of Electroactive Polymers , 2004 .

[43]  A. Katchalsky Rapid swelling and deswelling of reversible gels of polymeric acids by ionization , 1949, Experientia.

[44]  Sia Nemat-Nasser,et al.  Ionomeric Polymer-Metal Composites , 2004 .

[45]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[46]  Kinji Asaka,et al.  Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics , 2000 .

[47]  Kinji Asaka,et al.  Polymer electrolyte actuator with gold electrodes , 1999, Smart Structures.

[48]  F. C. Wilson,et al.  Morphology of Perfluorosulfonated Membrane Products: Wide-Angle and Small-Angle X-Ray Studies , 1982 .

[49]  Promode R Bandyopadhyay,et al.  Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles1 , 2002, Integrative and comparative biology.

[50]  John D. W. Madden,et al.  Conducting polymer actuators as engineering materials , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[51]  Promode R. Bandyopadhyay,et al.  A Biomimetic Propulsor for Active Noise Control: Experiments , 2002 .

[52]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[53]  Kwang J. Kim,et al.  An Equivalent Circuit Model for Ionic Polymer-Metal Composites and their Performance Improvement by a Clay-Based Polymer Nano-Composite Technique , 2003 .

[54]  Peter S. Fedkiw,et al.  In Situ Electrode Formation on a Nafion Membrane by Chemical Platinization , 1992 .