Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer.

The unique anisotropic wet-etching mechanism of a (111) silicon wafer facilitates the highly controllable top-down fabrication of silicon nanowires (SiNWs) with conventional microfabrication technology. The fabrication process is compatible with the surface manufacturing technique, which is employed to build a nanowire-based field-effect transistor structure on the fabricated SiNW.

[1]  Mauludi Ariesto Pamungkas,et al.  Stress evolution during the oxidation of silicon nanowires in the sub-10 nm diameter regime , 2011 .

[2]  Bozhi Tian,et al.  Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. , 2008, Nano letters.

[3]  Ilya Sychugov,et al.  Surface charge sensitivity of silicon nanowires: size dependence. , 2007, Nano letters.

[4]  Chia-Ching Lee,et al.  Er-doped silicon nanowires with 1.54μm light-emitting and enhanced electrical and field emission properties , 2007 .

[5]  Sung-Sik Yun,et al.  Volume-producible fabrication of a silicon nanowire via crystalline wet etching of (1 1 0) silicon , 2008 .

[6]  Roya Maboudian,et al.  Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication , 2005 .

[7]  R. E. Oosterbroek,et al.  Etching methodologies in -oriented silicon wafers , 2000 .

[8]  Albert van den Berg,et al.  Novel top-down wafer-scale fabrication of single crystal silicon nanowires. , 2009, Nano letters.

[9]  Tymon Barwicz,et al.  Silicon nanowire piezoresistance: Impact of surface crystallographic orientation , 2010 .

[10]  A. S. Grove,et al.  Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon , 1967 .

[11]  Gehan A. J. Amaratunga,et al.  Self-Aligned, Gated Arrays of Individual Nanotube and Nanowire Emitters , 2004 .

[12]  Kyu-Sik Shin,et al.  Well controlled assembly of silicon nanowires by nanowire transfer method , 2007 .

[13]  D. Mercier,et al.  Piezoresistance of top-down suspended Si nanowires , 2011, Nanotechnology.

[14]  Volker Schmidt,et al.  Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires , 2006 .

[15]  Joseph Wang,et al.  Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing. , 2008, Small.

[16]  C H B Mee,et al.  Work function measurements on (100), (110) and (111) surfaces of aluminium , 1973 .

[17]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[18]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[19]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[20]  A. Bachtold,et al.  Ultrasensitive mass sensing with a nanotube electromechanical resonator. , 2008, Nano letters.

[21]  Guo-Qiang Lo,et al.  Modeling of Stress-Retarded Thermal Oxidation of Nonplanar Silicon Structures for Realization of Nanoscale Devices , 2010, IEEE Electron Device Letters.

[22]  Pritiraj Mohanty,et al.  Evidence for quantized displacement in macroscopic nanomechanical oscillators. , 2005, Physical review letters.

[23]  Albert van den Berg,et al.  Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. , 2009, ACS nano.