On the identification of symmetric quadrature rules for finite element methods

In this paper we describe a methodology for the identification of symmetric quadrature rules inside of quadrilaterals, triangles, tetrahedra, prisms, pyramids, and hexahedra. The methodology is free from manual intervention and is capable of identifying a set of rules with a given strength and a given number of points. We also present polyquad which is an implementation of our methodology. Using polyquad v1.0 we proceed to derive a complete set of symmetric rules on the aforementioned domains. All rules possess purely positive weights and have all points inside the domain. Many of the rules appear to be new, and an improvement over those tabulated in the literature.

[1]  D. A. Dunavant Economical symmetrical quadrature rules for complete polynomials over a square domain , 1985 .

[2]  Andrew F. Peterson,et al.  Quadrature rules for numerical integration over triangles and tetrahedra , 1996 .

[3]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[4]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[5]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[6]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[7]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[8]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[9]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[10]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[11]  D. A. Dunavant Efficient symmetrical cubature rules for complete polynomials of high degree over the unit cube , 1986 .

[12]  Ronald Cools,et al.  Rotation invariant cubature formulas over the n -dimensional unit cube , 2001 .

[13]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[14]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[15]  Antony Jameson,et al.  Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements , 2014, J. Comput. Appl. Math..

[16]  Beth A. Wingate,et al.  Several new quadrature formulas for polynomial integration in the triangle , 2005 .

[17]  Frank E. Ham,et al.  Symmetric quadrature rules for tetrahedra based on a cubic close-packed lattice arrangement , 2012, J. Comput. Appl. Math..

[18]  Hui,et al.  A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA , 2009 .

[19]  Ethan J. Kubatko,et al.  New computationally efficient quadrature formulas for pyramidal elements , 2013 .

[20]  Ethan J. Kubatko,et al.  New computationally efficient quadrature formulas for triangular prism elements , 2013 .

[21]  Ronald Cools,et al.  Another step forward in searching for cubature formulae with a minimal number of knots for the square , 2005, Computing.

[22]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[23]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[24]  Freddie D. Witherden,et al.  An Analysis of Solution Point Coordinates for Flux Reconstruction Schemes on Triangular Elements , 2014, J. Sci. Comput..

[25]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.