Quantifier Elimination over Finite Fields Using Gröbner Bases

We give an algebraic quantifier elimination algorithm for the first-order theory over any given finite field using Grobner basis methods. The algorithm relies on the strong Nullstellensatz and properties of elimination ideals over finite fields. We analyze the theoretical complexity of the algorithm and show its application in the formal analysis of a biological controller model.

[1]  Tobias Nipkow Linear Quantifier Elimination , 2008, IJCAR.

[2]  Françoise Lamnabhi-Lagarrigue,et al.  Algebraic Computing in Control , 1991 .

[3]  Paul Le Guernic,et al.  Polynomial dynamical systems over finite fields , 1991 .

[4]  Q. Tran Groebner Bases Computation in Boolean Rings is P-SPACE , 2009 .

[5]  Michel Le Borgne,et al.  Partial Order Control and Optimal Control of Discrete Event Systems modeled as Polynomial Dynamical , 1997 .

[6]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[7]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[8]  Karen Duca,et al.  An optimal control problem for in vitro virus competition , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Y. N. Lakshman,et al.  On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.

[10]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[11]  David L. Dill,et al.  Automatic Formal Verification of Block Cipher Implementations , 2008, 2008 Formal Methods in Computer-Aided Design.

[12]  Abdul Salam Jarrah,et al.  Reverse-engineering of polynomial dynamical systems , 2007, Adv. Appl. Math..

[13]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[14]  David Monniaux A Quantifier Elimination Algorithm for Linear Real Arithmetic , 2008, LPAR.

[15]  Michel Le Borgne ON THE OPTIMAL CONTROL OF POLYNOMIAL DYNAMICAL , 1998 .

[16]  Sicun Gao,et al.  Counting Zeros over Finite Fields with Gröbner Bases , 2009 .

[17]  Roger Germundsson Basic Results on Ideals and Varieties in Finite Fields , 1991 .