Discrepancy Convergence for the Drunkard's Walk on the Sphere
暂无分享,去创建一个
[1] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[2] F. Su,et al. Random walks with badly approximable numbers , 2001, Unusual Applications of Number Theory.
[3] F. Su. A LeVeque-type lower bound for discrepancy , 2000 .
[4] SU Francisedward. CONVERGENCE OF RANDOM WALKS ON THE CIRCLE GENERATED BY AN IRRATIONAL ROTATION , 1998 .
[5] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[6] M. Voit. RATE OF CONVERGENCE TO GAUSSIAN MEASURES ON n-SPHERES AND JACOBI HYPERGROUPS , 1997 .
[7] K. Maurin. Representations of Compact Lie Groups , 1997 .
[8] M. Voit. Limit theorems for compact two-point homogeneous spaces of large dimensions , 1996 .
[9] U. Porod. The cut-off phenomenon for random reflections , 1996 .
[10] M. Voit. A Central-Limit-Theorem for Isotropic Random-Walks on n-Spheres for n → ∞ , 1995 .
[11] H. Heyer,et al. Harmonic Analysis of Probability Measures on Hypergroups , 1994 .
[12] J. Rosenthal. Random Rotations: Characters and Random Walks on SO(N) , 1994 .
[13] Andrew Simon Greenhalgh,et al. Random walks on groups with subgroup invariance properties , 1989 .
[14] P. Diaconis. Group representations in probability and statistics , 1988 .
[15] P. Diaconis,et al. Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .
[16] G. Letac. Problemes classiques de probabilite sur un couple de Gelfand , 1981 .
[17] J. Dieudonne,et al. Special Functions and Linear Representations of Lie Groups , 1980 .
[18] William W. L. Chen. On irregularities of distribution. , 1980 .
[19] J.dieudonne. Treatise On Analysis Vol-ii , 1976 .
[20] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[21] J. Williamson,et al. ABSTRACT HARMONIC ANALYSIS, VOL. II , 1972 .
[22] J. Dieudonne. Treatise on Analysis , 1969 .
[23] R. Lipsman. Abstract harmonic analysis , 1968 .
[24] D. Jackson,et al. fourier series and orthogonal polynomials , 1943, The Mathematical Gazette.