Algorithmic properties of maximal orders in simple algebras over Q

AbstractThis paper addresses an algorithmic problem related to associative algebras. We show that the problem of deciding if the index of a given central simple algebra $$\mathcal{A}$$ over an algebraic number field isd, whered is a given natural number, belongs to the complexity classN P ∩co N P. As consequences, we obtain that the problem of deciding if $$\mathcal{A}$$ is isomorphic to a full matrix algebra over the ground field and the problem of deciding if $$\mathcal{A}$$ is a skewfield both belong toN P ∩co N P. These results answer two questions raised in [25]. The algorithms and proofs rely mostly on the theory of maximal orders over number fields, a noncommutative generalization of algebraic number theory. Our results include an extension to the noncommutative case of an algorithm given by Huang for computing the factorization of rational primes in number fields and of a method of Zassenhaus for testing local maximality of orders in number fields.

[1]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[2]  Lajos Rónyai,et al.  Computing irreducible representations of finite groups , 1990 .

[3]  A. Pizer,et al.  An algorithm for computing modular forms on Γ0(N) , 1980 .

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[6]  Lajos Rónyai,et al.  Zero Divisors in Quaternion Algebras , 1988, J. Algorithms.

[7]  A. Kertész,et al.  Lectures on Artinian rings , 1987 .

[8]  Wayne Eberly,et al.  Decomposition of algebras over finite fields and number fields , 1991, computational complexity.

[9]  Ming-Deh A. Huang Factorization of polynomials over finite fields and factorization of primes in algebraic number fields , 1984, STOC '84.

[10]  J. Gathen,et al.  Computations for algebras and group representations , 1989 .

[11]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[12]  Lajos Rónyai,et al.  Computing irreducible representations of finite groups , 1989, 30th Annual Symposium on Foundations of Computer Science.

[13]  Hans Zassenhaus EIN ALGORITHMUS ZUR BERECHNUNG EINER MINIMALBASIS UBER GEGEBENER , 1967 .

[14]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[15]  Wayne Eberly,et al.  Decompositions of algebras over ℝ and ℂ , 1991, computational complexity.

[16]  O. O’Meara Introduction to quadratic forms , 1965 .

[17]  Lajos Rónyai,et al.  Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..

[18]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[19]  Michael A. Frumkin,et al.  Polynomial Time Algorithms in the Theory of Linear Diophantine Equations , 1977, FCT.

[20]  S. Lang Algebraic Number Theory , 1971 .

[21]  H. Zassenhaus,et al.  Algorithmic algebraic number theory: Preface , 1989 .

[22]  Lajos Rónyai,et al.  Polynomial time solutions of some problems of computational algebra , 1985, STOC '85.