Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains
暂无分享,去创建一个
[1] J. D. Winter. An Introduction to Igneous and Metamorphic Petrology , 2001 .
[2] M. Malin,et al. Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.
[3] B. Velde. Origin and mineralogy of clays , 1995 .
[4] B. Velde. Origin and mineralogy of clays: clays and the environment. , 1995 .
[5] S. Anbazhagan,et al. Reflectance spectra of analog anorthosites: Implications for lunar highland mapping , 2010 .
[6] J. Papike,et al. INVITED REVIEW. Magmatic evolution of the Moon , 1999 .
[7] Y. Langevin,et al. Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.
[8] G. J. Taylor,et al. Distribution and modes of occurrence of lunar anorthosite , 2003 .
[9] Richard V. Morris,et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .
[10] Jean-Pierre Bibring,et al. Automated processing of planetary hyperspectral datasets for the extraction of weak mineral signatures and applications to CRISM observations of hydrated silicates on Mars , 2013 .
[11] Raymond E. Arvidson,et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .
[12] H. McSween,et al. Distribution and variation of plagioclase compositions on Mars , 2010 .
[13] M. Charette,et al. Spectral Reflectance of Lunar Highland Rocks , 1977 .
[14] Jeffrey R. Johnson,et al. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars , 2003 .
[15] David A. Crown,et al. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra , 1987 .
[16] Scott L. Murchie,et al. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .
[17] Carle M. Pieters,et al. The distribution and purity of anorthosite across the Orientale basin: New perspectives from Moon Mineralogy Mapper data , 2013 .
[18] Jeffrey R. Johnson,et al. Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .
[19] Paul H. Warren,et al. THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .
[20] M. D. Dyar,et al. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas , 2008, Clay Minerals.
[21] L. Ashwal. THE TEMPORALITY OF ANORTHOSITES , 2010 .
[22] M. Mellon,et al. Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .
[23] L. Borg,et al. A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .
[24] John A. Wood,et al. Lunar anorthosites and a geophysical model of the moon , 1970 .
[25] Kenneth L. Tanaka,et al. Geologic Map of the Hellas Region of Mars , 2001 .
[26] Jean-Pierre Bibring,et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .
[27] P. C. Hess,et al. Possible formation of ancient crust on Mars through magma ocean processes , 2005 .
[28] J. B. Adams,et al. Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing , 1978 .
[29] Jean-Pierre Bibring,et al. Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .
[30] Joshua L. Bandfield,et al. A Global View of Martian Surface Compositions from MGS-TES , 2000 .
[31] Akira Iwasaki,et al. The global distribution of pure anorthosite on the Moon , 2009, Nature.