Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains

The formation of the silicate mineral anorthosite is thought to require magmatic processes that are not expected on Mars because of its predominately mafic terrains. Localized spectral detections by the Mars Reconnaissance Orbiter are consistent with anorthosite, suggestive of ancient intrusive igneous processes similar to those active on Earth.

[1]  J. D. Winter An Introduction to Igneous and Metamorphic Petrology , 2001 .

[2]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[3]  B. Velde Origin and mineralogy of clays , 1995 .

[4]  B. Velde Origin and mineralogy of clays: clays and the environment. , 1995 .

[5]  S. Anbazhagan,et al.  Reflectance spectra of analog anorthosites: Implications for lunar highland mapping , 2010 .

[6]  J. Papike,et al.  INVITED REVIEW. Magmatic evolution of the Moon , 1999 .

[7]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[8]  G. J. Taylor,et al.  Distribution and modes of occurrence of lunar anorthosite , 2003 .

[9]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[10]  Jean-Pierre Bibring,et al.  Automated processing of planetary hyperspectral datasets for the extraction of weak mineral signatures and applications to CRISM observations of hydrated silicates on Mars , 2013 .

[11]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[12]  H. McSween,et al.  Distribution and variation of plagioclase compositions on Mars , 2010 .

[13]  M. Charette,et al.  Spectral Reflectance of Lunar Highland Rocks , 1977 .

[14]  Jeffrey R. Johnson,et al.  Visible/near-infrared spectra of experimentally shocked plagioclase feldspars , 2003 .

[15]  David A. Crown,et al.  Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra , 1987 .

[16]  Scott L. Murchie,et al.  Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .

[17]  Carle M. Pieters,et al.  The distribution and purity of anorthosite across the Orientale basin: New perspectives from Moon Mineralogy Mapper data , 2013 .

[18]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[19]  Paul H. Warren,et al.  THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .

[20]  M. D. Dyar,et al.  Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas , 2008, Clay Minerals.

[21]  L. Ashwal THE TEMPORALITY OF ANORTHOSITES , 2010 .

[22]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[23]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[24]  John A. Wood,et al.  Lunar anorthosites and a geophysical model of the moon , 1970 .

[25]  Kenneth L. Tanaka,et al.  Geologic Map of the Hellas Region of Mars , 2001 .

[26]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[27]  P. C. Hess,et al.  Possible formation of ancient crust on Mars through magma ocean processes , 2005 .

[28]  J. B. Adams,et al.  Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing , 1978 .

[29]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[30]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[31]  Akira Iwasaki,et al.  The global distribution of pure anorthosite on the Moon , 2009, Nature.