Age determination using feldspar: Evaluating fading-correction model performance

[1]  M. Frechen,et al.  Testing the reliability of fading correction methods for feldspar IRSL dating: A comparison between natural and simulated-natural dose response curves , 2018, Radiation Measurements.

[2]  Z. Jacobs,et al.  Single-grain dating of potassium-rich feldspar grains: Towards a global standardised growth curve for the post-IR IRSL signal , 2018 .

[3]  M. Frechen,et al.  Timing of fluvial sedimentation in the Upper Rhine Graben since the Middle Pleistocene: constraints from quartz and feldspar luminescence dating , 2018 .

[4]  Martin Kehl,et al.  The Agh Band loess-palaeosol sequence – A terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran , 2017 .

[5]  Frédéric Herman,et al.  Trapped-charge thermochronometry and thermometry: A status review , 2016 .

[6]  Philippe Steer,et al.  Exploring IRSL 50 fading variability in bedrock feldspars and implications for OSL thermochronometry , 2016 .

[7]  Eric P. Verrecchia,et al.  Pedogenic carbonate nodules as soil time archives: Challenges and investigations related to OSL dating , 2016 .

[8]  N. Pearce,et al.  Identification of a Kulshan caldera correlative tephra in the Palouse loess of Washington State, northwest USA , 2016, Quaternary Research.

[9]  F. Herman,et al.  Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry , 2016, Science.

[10]  F. Herman,et al.  Multi-OSL-thermochronometry of feldspar , 2016 .

[11]  A. Murray,et al.  Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range , 2015 .

[12]  F. Lehmkuhl,et al.  De plateau and its implications for post-IR IRSL dating of polymineral fine grains , 2015 .

[13]  Reuven Chen,et al.  Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar , 2015 .

[14]  Reuven Chen,et al.  OSL-thermochronometry of feldspar from the KTB borehole, Germany , 2015 .

[15]  G. Duller,et al.  DRAC: Dose Rate and Age Calculator for trapped charge dating , 2015 .

[16]  M. Fiebig,et al.  Luminescence dating of glaciofluvial deposits linked to the penultimate glaciation in the Eastern Alps , 2015, Quaternary international : the journal of the International Union for Quaternary Research.

[17]  J. Wallinga,et al.  Bleaching of the post‐IR IRSL signal: new insights for feldspar luminescence dating , 2014 .

[18]  W. Kidd,et al.  Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet , 2014 .

[19]  Zhongping Lai,et al.  A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess , 2012 .

[20]  H. Roberts Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control , 2012 .

[21]  M. T. Andersen,et al.  Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin? , 2012 .

[22]  B. Li,et al.  Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar , 2012 .

[23]  A. Murray,et al.  A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments , 2012 .

[24]  T. Reimann,et al.  Dating the recent past (<500 years) by post-IR IRSL feldspar – Examples from the North Sea and Baltic Sea coast , 2012 .

[25]  Sebastian Kreutzer,et al.  Introducing an R package for luminescence dating analysis , 2012 .

[26]  F. Preusser,et al.  Testing the application of post IR-IRSL dating to fine grain waterlain sediments , 2012 .

[27]  W. Perkins,et al.  Trace-element microanalysis by LA-ICP-MS: The quest for comprehensive chemical characterisation of single, sub-10 μm volcanic glass shards , 2011 .

[28]  Sheng‐Hua Li,et al.  Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction , 2011 .

[29]  A. Singhvi,et al.  An attempt to correct for the fading in million year old basaltic rocks , 2011 .

[30]  A. Murray,et al.  Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol , 2011 .

[31]  A. Murray,et al.  Stability of IRSL signals from sedimentary K-feldspar samples , 2011 .

[32]  A. Knapp,et al.  New stratigraphic markers in the late Pleistocene Palouse loess: novel fossil gastropods, absolute age constraints and non‐aeolian facies , 2010 .

[33]  J. Wallinga,et al.  IRSL dating of K-feldspars: Modelling natural dose response curves to deal with anomalous fading and trap competition , 2009 .

[34]  A. Murray,et al.  Testing the potential of an elevated temperature IRSL signal from K-feldspar , 2009 .

[35]  M. Summerfield,et al.  The evolution of western Scandinavian topography: A review of Neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis , 2009 .

[36]  Stephen C. Kuehn,et al.  Major- and trace-element characterization, expanded distribution, and a new chronology for the latest Pleistocene Glacier Peak tephras in western North America , 2009, Quaternary Research.

[37]  Sheng‐Hua Li,et al.  Investigations of the dose-dependent anomalous fading rate of feldspar from sediments , 2008 .

[38]  A. Murray,et al.  Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts , 2008 .

[39]  T. Pavlis,et al.  Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological investigation of tectonic-climatic interactions within the central St. Elias orogen, Alaska , 2008 .

[40]  J. Wallinga,et al.  A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation , 2008 .

[41]  A. Murray,et al.  Optical dating of an Eemian site in Northern Russia using K-feldspar , 2008 .

[42]  W. Perkins,et al.  Correlation and characterisation of individual glass shards from tephra deposits using trace element laser ablation ICP‐MS analyses: current status and future potential , 2007 .

[43]  O. Lian,et al.  Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating , 2006 .

[44]  A. Murray,et al.  A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols , 2006 .

[45]  K. Herwig,et al.  MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios , 2006 .

[46]  David J. Huntley,et al.  An explanation of the power-law decay of luminescence , 2006 .

[47]  A. Meigs,et al.  Long-term glacial erosion of active mountain belts: Example of the Chugach-St. Elias Range, Alaska , 2004 .

[48]  Michel Lamothe,et al.  Towards a prediction of long-term anomalous fading of feldspar IRSL , 2003 .

[49]  S. Huot,et al.  Measurement of anomalous fading for feldspar IRSL using SAR , 2003 .

[50]  A. Murray,et al.  Developments in radiation, stimulation and observation facilities in luminescence measurements , 2003 .

[51]  M. Lamothe,et al.  Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating , 2001 .

[52]  D. Gaylord,et al.  Smith Canyon dune field, Washington, U.S.A : relation to glacial outburst floods, the Mazama eruption, and Holocene paleoclimate , 2001 .

[53]  C. Schlüchter,et al.  Luminescence Dating of Sediments from the Luthern Valley, Central Switzerland, and Implications for the Chronology of the Last Glacial Cycle , 2001, Quaternary Research.

[54]  M. Lamothe,et al.  The fadia method: a new approach in luminescence dating using the analysis of single feldspar grains , 2000 .

[55]  M. Lamothe,et al.  A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals , 1999 .

[56]  G. Zielinski,et al.  Mount Mazama eruption: Calendrical age verified and atmospheric impact assessed , 1999 .

[57]  F. Preusser Luminescence dating of fluvial sediments and overbank deposits from Gossau, Switzerland: fine grain dating , 1999 .

[58]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[59]  W. Mchardy Microprobe Techniques in the Earth Sciences , 1996, Clay Minerals.

[60]  E. McDonald,et al.  Correlation of Distal Tephra Layers in Loess in the Channeled Scabland and Palouse of Washington state , 1992, Quaternary Research.

[61]  John Adams,et al.  Paleoseismicity of the Cascadia Subduction Zone: Evidence from turbidites off the Oregon‐Washington Margin , 1990 .

[62]  V. Mejdahl THERMOLUMINESCENCE DATING: BETA‐DOSE ATTENUATION IN QUARTZ GRAINS , 1979 .

[63]  J. Westgate,et al.  Compositional variability of Glacier Peak tephra and its stratigraphic significance , 1978 .

[64]  H. T. Millard,et al.  Correlation of the Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis , 1972 .

[65]  Norbert Mercier,et al.  Dose-rate conversion factors: update , 2011 .

[66]  K. Gallagher,et al.  A fission track data compilation for Fennoscandia , 2007 .

[67]  Subir K. Banerjee,et al.  Luminescence investigation of loess and tephra from Halfway House section, Central Alaska , 2007 .

[68]  P. Dorenbos,et al.  A test case for anomalous fading correction in IRSL dating , 2006 .

[69]  F. Preusser IRSL dating of K-rich feldspars using the SAR protocol: comparison with independent age control. , 2003 .

[70]  C. Schlüchter,et al.  Zur Kalibration der 14C- Zeitskala vor 22000 Jahren v.h. , 1998 .

[71]  W. Perkins,et al.  Mineral microanalysis by laserprobe inductively coupled plasma mass spectrometry , 1995 .

[72]  R. Bland,et al.  The most ancient Paleolithic of the Diring and the problem of a nontropical origin for humanity , 1993 .