High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. II. Polarization of histidine 57 by substrate analogues and competitive inhibitors.

[1]  G. Robillard,et al.  High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. I. The hydrogen bonded protons of the "charge relay" system. , 1974, Journal of molecular biology.

[2]  M. Hunkapiller,et al.  Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. , 1973, Biochemistry.

[3]  M. Lazdunski,et al.  The interaction between alpha-chymotrypsin and pancreatic trypsin inhibitor (Kunitz inhibitor). Kinetic and thermodynamic properties. , 1973, European journal of biochemistry.

[4]  J. Beintema,et al.  Proton nuclear magnetic resonance studies of histidine residues in rat and other rodent pancreatic ribonucleases. Effects of pH and inhibitors. , 1973, Journal of molecular biology.

[5]  R. Huber,et al.  Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. , 1973, Journal of molecular biology.

[6]  A. Schechter,et al.  The assignment of an exchangeable low-field NH proton resonance of ribonuclease A to the active-site histidine-119. , 1973, Biochemistry.

[7]  R. Shulman,et al.  Nuclear magnetic resonance study of exchangeable protons in ferrocytochrome c. , 1973, Journal of molecular biology.

[8]  A. Fersht,et al.  The charge relay system in chymotrypsin and chymotrypsinogen. , 1973, Journal of molecular biology.

[9]  R. Shulman,et al.  High resolution nuclear magnetic resonance study of the histidine--aspartate hydrogen bond in chymotrypsin and chymotrypsinogen. , 1972, Journal of molecular biology.

[10]  Robert J. Buenker,et al.  Ab initio study of the hydrogen bond in [H3N-H...NH3]+ , 1972 .

[11]  J. Kraut,et al.  Subtilisin; a stereochemical mechanism involving transition-state stabilization. , 1972, Biochemistry.

[12]  A. Fersht,et al.  Conformational equilibria in -and -chymotrypsin. The energetics and importance of the salt bridge. , 1972, Journal of molecular biology.

[13]  C. Yim,et al.  Studies of the histidine residues of carbonic anhydrases using high-field proton magnetic resonance. , 1972, Biochemistry.

[14]  D. Blow,et al.  Structure of crystalline methyl-chymotrypsin. , 1972, Journal of molecular biology.

[15]  M. Caplow,et al.  Chymotrypsin catalysis. Evidence for a new intermediate. , 1969, Journal of the American Chemical Society.

[16]  R. Henderson,et al.  -Chymotrypsin: what can we learn about catalysis from x-ray diffraction? , 1972, Cold Spring Harbor symposia on quantitative biology.

[17]  A. Fersht,et al.  Mechanism of the -chymotrypsin-catalyzed hydrolysis of amides. pH dependence of k c and K m . Kinetic detection of an intermediate. , 1971, Journal of the American Chemical Society.

[18]  T. Horbett,et al.  Reevaluation of the activation of bovine chymotrypsinogen A. , 1971, Biochemistry.

[19]  R. Shulman,et al.  High resolution nuclear magnetic resonance study of base pairing in four purified transfer RNA molecules. , 1971, Journal of molecular biology.

[20]  G. Cohen,et al.  Substrate binding site in bovine chymotrypsin A-gamma. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. , 1971, Biochemistry.

[21]  A. Fersht Acyl-transfer reactions of amides and esters with alcohols and thiols. A reference system for the serine and cysteine proteinases. Concerning the N protonation of amides and amide-imidate equilibria. , 1971, Journal of the American Chemical Society.

[22]  G. Lienhard,et al.  2-phenylethaneboronic acid, a possible transition-state analog for chymotrypsin. , 1971, Biochemistry.

[23]  G. Roberts,et al.  Nuclear magnetic resonance studies of human carbonic anhydrase B. Histidine residues. , 1971, Biochemistry.

[24]  R. Henderson Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. , 1970, Journal of molecular biology.

[25]  R. Shulman,et al.  Nuclear magnetic resonance study of cyanoferrimyoglobin; identification of pseudocontact shifts. , 1970, Journal of molecular biology.

[26]  N. Xuong,et al.  Chymotrypsinogen: 2,5-Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation , 1970 .

[27]  V. Antonov,et al.  n‐Alkylboronic acids as bifunctional reversible inhibitors of α‐chymotrypsin , 1970 .

[28]  D. Shotton,et al.  Three-dimensional Structure of Tosyl-elastase , 1970, Nature.

[29]  D. Shotton,et al.  Three-dimensional Fourier Synthesis of Tosyl-elastase at 3.5 Å Resolution , 1970, Nature.

[30]  G. P. Hess,et al.  Studies of the activity of chymotrypsin. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  E. Kaiser,et al.  [1] Principles of active site titration of proteolytic enzymes , 1970 .

[32]  P. E. Wilcox [5] Chymotrypsinogens—chymotrypsins , 1970 .

[33]  Thomas A. Steitz,et al.  Structure of crystalline α-chymotrypsin: III. Crystallographic studies of substrates and inhibitors bound to the active site of α-chymotrypsin , 1969 .

[34]  G. Fasman,et al.  Conformation of the high pH form of chymotrypsin. , 1969, Journal of molecular biology.

[35]  D. Blow,et al.  Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin , 1969, Nature.

[36]  J. Kraut,et al.  Structure of Subtilisin BPN′ at 2.5 Å Resolution , 1969, Nature.

[37]  G. Czerlinski,et al.  Conformation and Activity of Chymotrypsin: The pH-Dependent, Substrate-Induced Proton Uptake , 1968, Science.

[38]  B. Matthews,et al.  Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. , 1968, Journal of molecular biology.

[39]  B. Havsteen The kinetics of the two-step interaction of chymotrypsin with proflavin. , 1967, The Journal of biological chemistry.

[40]  J. Knowles,et al.  The binding of inhibitors to α-chymotrypsin , 1966 .

[41]  M. Laskowski,et al.  PEPTIDE BOND CLEAVAGE ON TRYPSINTRYPSIN INHIBITOR COMPLEX FORMATION. , 1965, The Journal of biological chemistry.

[42]  G. P. Hess,et al.  Conformational changes accompanying the formation of chymotrypsin-substrate complexes. Evidence for the involvement of an N-terminal alpha-amino group in the activity and the conformation of the enzyme. , 1964, Biochemical and Biophysical Research Communications - BBRC.

[43]  Manfred Eigen,et al.  Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES†‡ , 1964 .

[44]  E. Shaw,et al.  Direct evidence for the presence of histidine in the active center of chymotrypsin. , 1963, Biochemistry.

[45]  G. Hammes,et al.  FAST REACTIONS OF IMIDAZOLE STUDIED WITH RELAXATION SPECTROMETRY , 1960 .

[46]  J. Edwards,et al.  The Structure of the Aqueous Borate Ion , 1955 .

[47]  G. E. Branch,et al.  The Relative Strengths of Some Hydrocarbon Derivatives of Boric Acid , 1934 .