Identification of a selenium-dependent glutathione peroxidase in the blood-sucking insect Rhodnius prolixus.

[1]  Galina A. Erikson,et al.  The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima , 2014, PLoS biology.

[2]  P. Bisch,et al.  An Insight into the Transcriptome of the Digestive Tract of the Bloodsucking Bug, Rhodnius prolixus , 2014, PLoS neglected tropical diseases.

[3]  F. Dias,et al.  Ovarian Dual Oxidase (Duox) Activity Is Essential for Insect Eggshell Hardening and Waterproofing* , 2013, The Journal of Biological Chemistry.

[4]  R. Guigó,et al.  SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins , 2013, Nucleic acids research.

[5]  J. Meyer-Fernandes,et al.  Looking for reference genes for real‐time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae) , 2011, Insect molecular biology.

[6]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[7]  M. Yamaguchi,et al.  Essential Role of Duox in Stabilization of Drosophila Wing* , 2011, The Journal of Biological Chemistry.

[8]  Stefano Toppo,et al.  A comparison of thiol peroxidase mechanisms. , 2011, Antioxidants & redox signaling.

[9]  V. Gladyshev,et al.  Analyses of Fruit Flies That Do Not Express Selenoproteins or Express the Mouse Selenoprotein, Methionine Sulfoxide Reductase B1, Reveal a Role of Selenoproteins in Stress Resistance* , 2011, The Journal of Biological Chemistry.

[10]  V. Winfrey,et al.  Glutathione peroxidase-3 produced by the kidney binds to a population of basement membranes in the gastrointestinal tract and in other tissues. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[11]  Elias S. J. Arnér,et al.  Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[12]  J. Whitin,et al.  Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. , 2010, American journal of physiology. Renal physiology.

[13]  V. Gladyshev,et al.  Eukaryotic selenoproteins and selenoproteomes. , 2009, Biochimica et biophysica acta.

[14]  S. Toppo,et al.  Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. , 2009, Biochimica et biophysica acta.

[15]  A. Krol,et al.  The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. , 2009, Biochimica et biophysica acta.

[16]  Y. Zo,et al.  Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals , 2009, BMC Evolutionary Biology.

[17]  Charles E. Chapple,et al.  A short motif in Drosophila SECIS Binding Protein 2 provides differential binding affinity to SECIS RNA hairpins , 2009, Nucleic acids research.

[18]  Rogerio Margis,et al.  Glutathione peroxidase family – an evolutionary overview , 2008, The FEBS journal.

[19]  Stefano Toppo,et al.  Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. , 2008, Antioxidants & redox signaling.

[20]  Silvio C. E. Tosatto,et al.  The catalytic site of glutathione peroxidases. , 2008, Antioxidants & redox signaling.

[21]  Stefano Toppo,et al.  The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. , 2007, Journal of molecular biology.

[22]  M. Sorgine,et al.  Adaptations against heme toxicity in blood-feeding arthropods. , 2006, Insect biochemistry and molecular biology.

[23]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[24]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[25]  H. Jäckle,et al.  A Putative Glutathione Peroxidase of Drosophila Encodes a Thioredoxin Peroxidase That Provides Resistance against Oxidative Stress But Fails to Complement a Lack of Catalase Activity , 2003, Biological chemistry.

[26]  D. Hatfield,et al.  "Selenium: Its Molecular Biology and Role in Human Health" , 2002 .

[27]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[28]  P. Oliveira,et al.  Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus. , 2001, Archives of insect biochemistry and physiology.

[29]  H. Jäckle,et al.  Cooperative action of antioxidant defense systems in Drosophila , 2001, Current Biology.

[30]  J. Lambeth,et al.  Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox , 2001, The Journal of cell biology.

[31]  J. Arthur The glutathione peroxidases , 2001, Cellular and Molecular Life Sciences CMLS.

[32]  H. Jäckle,et al.  The class 2 selenophosphate synthetase gene of Drosophila contains a functional mammalian‐type SECIS , 2000, EMBO reports.

[33]  J. Harney,et al.  Decoding apparatus for eukaryotic selenocysteine insertion , 2000, EMBO reports.

[34]  B. Carlson,et al.  Selenium Metabolism in Drosophila , 1999, The Journal of Biological Chemistry.

[35]  J. Harney,et al.  Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. , 1999, RNA.

[36]  A. Meister Glutathione-ascorbic acid antioxidant system in animals. , 1994, The Journal of biological chemistry.

[37]  S. Schreier,et al.  Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. , 1993, Archives of biochemistry and biophysics.

[38]  M. Selkirk,et al.  Conservation of primary sequence of gp29, the major soluble cuticular glycoprotein, in three species of lymphatic filariae. , 1993, Molecular and biochemical parasitology.

[39]  A. Hilliker,et al.  Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W. Valentine,et al.  Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. , 1967, The Journal of laboratory and clinical medicine.

[41]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[42]  R. Brigelius-Flohé,et al.  Selenoproteins of the glutathione system , 2006 .

[43]  F. Blàsevich,et al.  Possible function of two insect phospholipid-hydroperoxide glutathione peroxidases. , 2003, Journal of insect physiology.

[44]  Oliveira,et al.  Extracellular glutathione peroxidase from the blood-sucking bug, rhodnius prolixus , 1999, Archives of insect biochemistry and physiology.

[45]  P. Carbon,et al.  An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation. , 1998, RNA.

[46]  E. Bechara,et al.  Urate protects a blood-sucking insect against hemin-induced oxidative stress. , 1997, Free radical biology & medicine.

[47]  D. Schomburg,et al.  Diversity of glutathione peroxidases. , 1995, Methods in enzymology.

[48]  M. Blaxter,et al.  Edinburgh Research Explorer Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homolog of glutathione peroxidase , 2022 .