Experimental and Efficient Algorithms

The multiprocessor scheduling problem consists in scheduling a set of tasks with known processing times into a set of identical processors so as to minimize their makespan, i.e., the maximum processing time over all processors. We propose a new heuristic for solving the multiprocessor scheduling problem, based on a hybrid heuristic to the bin packing problem. Computational results illustrating the effectiveness of this approach are reported and compared with those obtained by other heuristics.

[1]  Leonidas J. Guibas,et al.  A new representation for linear lists , 1977, STOC '77.

[2]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 2000, JEAL.

[3]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[4]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[5]  Ira Sheldon Pohl,et al.  Bi-directional and heuristic search in path problems , 1969 .

[6]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[7]  Seth Pettie,et al.  Experimental Evaluation of a New Shortest Path Algorithm , 2002, ALENEX.

[8]  Christos D. Zaroliagis,et al.  Using Multi-level Graphs for Timetable Information in Railway Systems , 2002, ALENEX.

[9]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[10]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[11]  Dorothea Wagner,et al.  Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.

[12]  Hermann Kaindl,et al.  Bidirectional Heuristic Search Reconsidered , 1997, J. Artif. Intell. Res..

[13]  Shashi Shekhar,et al.  Path computation algorithms for advanced traveller information system (ATIS) , 1993, Proceedings of IEEE 9th International Conference on Data Engineering.

[14]  Sakti Pramanik,et al.  An Efficient Path Computation Model for Hierarchically Structured Topographical Road Maps , 2002, IEEE Trans. Knowl. Data Eng..

[15]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[16]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[17]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[18]  Luc Devroye,et al.  Analysis of range search for random k-d trees , 2001, Acta Informatica.

[19]  Luc Devroye,et al.  Squarish k-d Trees , 2000, SIAM J. Comput..

[20]  Martin Holzer Hierarchical speed-up techniques for shortest-path algorithms , 2003 .

[21]  Conrado Martínez,et al.  Randomized K-Dimensional Binary Search Trees , 1998, ISAAC.

[22]  Robert E. Tarjan,et al.  Design and Analysis of a Data Structure for Representing Sorted Lists , 1978, SIAM J. Comput..

[23]  Conrado Martínez,et al.  On the average performance of orthogonal range search in multidimensional data structures , 2002, J. Algorithms.