Fastest-Path Planning for Direction-Dependent Speed Functions

We discuss path planning in a direction-dependent environment illustrated by the fastest-path problem with anisotropic speed function. The difficulty of optimal-path finding in a direction-dependent medium comes from the fact that our travel-time function is asymmetric and, in general, violates the triangle inequality. We present an analytical form solution for the fastest-path finding problem in an obstacle-free domain without making any assumptions on the structure of the speed function. Subsequently, we merge these results with visibility graph search methods to develop an obstacle-avoiding fastest-path finding algorithm for an anisotropic speed function. Optimal routing of a vessel in a stationary random seaway is discussed throughout the paper to motivate and demonstrate applications of our work.

[1]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[2]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[3]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[4]  Optimal Short-Range Routing of Vessels in a Seaway , 2009 .

[5]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[6]  Yajun Wang,et al.  Approximate shortest paths in anisotropic regions , 2007, SODA '07.

[7]  Neil C. Rowe Obtaining Optimal Mobile-Robot Paths with Nonsmooth Anisotropic Cost Functions Using Qualitative-State Reasoning , 1997, Int. J. Robotics Res..

[8]  H. S. Story,et al.  Fermat's principle, Huygens' principle, Hamilton's optics and sailing strategy , 1998 .

[9]  Zheng Sun,et al.  Movement Planning in the Presence of Flows , 2001, WADS.

[10]  Joseph S. B. Mitchell,et al.  L1 shortest paths among polygonal obstacles in the plane , 1992, Algorithmica.

[11]  Zheng Sun,et al.  On finding approximate optimal paths in weighted regions , 2006, J. Algorithms.

[12]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[13]  Frank D. Faulkner,et al.  NUMERICAL METHODS FOR DETERMINING OPTIMUM SHIP ROUTES , 1963 .

[14]  Neil C. Rowe,et al.  Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects , 1990, IEEE Trans. Robotics Autom..

[15]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[16]  Rolf Rysdyk,et al.  Waypoint Guidance for Small UAVs in Wind , 2005 .

[17]  Andy Philpott Optimising Yacht Routes under Uncertainty , 2000 .

[18]  Andy Philpott,et al.  Optimal Sailing Routes with Uncertain Weather , 2000 .

[19]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[20]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[21]  Andy Philpott,et al.  Yacht velocity prediction using mathematical programming , 1993 .

[22]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[23]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[24]  H. Alt,et al.  Visibility graphs and obstacle-avoiding shortest paths , 1988, ZOR Methods Model. Oper. Res..

[25]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[26]  Irina S. Dolinskaya Optimal path finding in direction, location, and time dependent environments , 2012 .

[27]  Anastassios N. Perakis,et al.  Deterministic Minimal Time Vessel Routing , 1990, Oper. Res..

[28]  Frank D. Faulkner A GENERAL NUMERICAL METHOD FOR DETERMINING OPTIMUM SHIP ROUTES , 1963 .

[29]  Zheng Sun,et al.  Movement Planning in the Presence of Flows , 2003, Algorithmica.

[30]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[31]  Irina S. Dolinskaya,et al.  Time-optimal trajectories with bounded curvature in anisotropic media , 2012, Int. J. Robotics Res..

[32]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[33]  Jürgen Sellen,et al.  Direction weighted shortest path planning , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[34]  A. B. Philpott,et al.  17. Stochastic Optimization and Yacht Racing , 2005, Applications of Stochastic Programming.

[35]  Irina S. Dolinskaya,et al.  Path Planning in an Anisotropic Medium , 2012 .