Parallel routing algorithms for nonblocking electronic and photonic switching networks

We study the connection capacity of a class of rearrangeable nonblocking (RNB) and strictly nonblocking (SNB) networks with/without crosstalk-free constraint, model their routing problems as weak or strong edge-colorings of bipartite graphs, and propose efficient routing algorithms for these networks using parallel processing techniques. This class of networks includes networks constructed from banyan networks by horizontal concatenation of extra stages and/or vertical stacking of multiple planes. We present a parallel algorithm that runs in O(lg/sup 2/ N) time for the RNB networks of complexities ranging from O(N lg N) to O(N/sup 1.5/ lg N) crosspoints and parallel algorithms that run in O(min{d* lg N, /spl radic/N}) time for the SNB networks of O(N/sup 1.5/ lg N) crosspoints, using a completely connected multiprocessor system of N processing elements. Our algorithms can be translated into algorithms with an O(lg N lg lg N) slowdown factor for the class of N-processor hypercubic networks, whose structures are no more complex than a single plane in the RNB and SNB networks considered.

[1]  Guido Maier,et al.  Design of photonic rearrangeable networks with zero first-order switching-element-crosstalk , 2001, IEEE Trans. Commun..

[2]  Tse-Yun Feng,et al.  On a Class of Multistage Interconnection Networks , 1980, IEEE Transactions on Computers.

[3]  A. A. Frank,et al.  On Programmable Parallel Data Routing Networks via Cross-Bar Switches for Multiple Element Computer Architectures , 1974, Sagamore Computer Conference.

[4]  V. Benes Permutation groups, complexes, and rearrangeable connecting networks , 1964 .

[5]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[6]  Leslie G. Valiant,et al.  A fast parallel algorithm for routing in permutation networks , 1981, IEEE Transactions on Computers.

[7]  C. Greg Plaxton,et al.  Deterministic sorting in nearly logarithmic time on the hypercube and related computers , 1990, Symposium on the Theory of Computing.

[8]  Guido Maier,et al.  Control of non-filterable crosstalk in optical-cross-connect banyan architectures , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[9]  Frank K. Hwang,et al.  A new decomposition algorithm for rearrangeable Clos interconnection networks , 1996, IEEE Trans. Commun..

[10]  Chin-Tau A. Lea,et al.  Wide-sense nonblocking Banyan-type switching systems based on directional couplers , 1998, IEEE J. Sel. Areas Commun..

[11]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[12]  A. Yavuz Oruç,et al.  A nonbacktracking matrix decomposition algorithm for routing on Clos networks , 1993, IEEE Trans. Commun..

[13]  Harold N. Gabow,et al.  Algorithms for Edge Coloring Bipartite Graphs and Multigraphs , 1982, SIAM J. Comput..

[14]  M. Goodman,et al.  Asymmetrically-dilated cross-connect switches for low-crosstalk WDM optical networks , 1995, LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings.

[15]  D. T. Moser,et al.  A low-voltage 8*8 Ti:LiNbO/sub 3/ switch with a dilated-Benes architecture , 1990 .

[16]  Chin-Tau A. Lea,et al.  Strictly nonblocking directional-coupler-based switching networks under crosstalk constraint , 2000, IEEE Trans. Commun..

[17]  A. Yavuz Oruç,et al.  Applications of matching and edge-coloring algorithms to routing in clos networks , 1994, Networks.

[18]  D. C. Opferman,et al.  On a class of rearrangeable switching networks part I: Control algorithm , 1971 .

[19]  Vladimir I. Neiman Structure et commande optimales de réseaux de connexion sans blocage , 1969 .

[20]  Chin-Tau A. Lea,et al.  Tradeoff of horizontal decomposition versus vertical stacking in rearrangeable nonblocking networks , 1991, IEEE Trans. Commun..

[21]  Sartaj Sahni,et al.  Parallel Algorithms to Set Up the Benes Permutation Network , 1982, IEEE Transactions on Computers.

[22]  Richard Cole,et al.  On Edge Coloring Bipartite Graphs , 1980, SIAM J. Comput..

[23]  Arun N. Netravali,et al.  Dilated Networks for Photonic Switching , 1987, IEEE Trans. Commun..

[24]  Dharma P. Agrawal,et al.  Graph Theoretical Analysis and Design of Multistage Interconnection Networks , 1983, IEEE Transactions on Computers.

[25]  Yi Pan,et al.  Optical multistage interconnection networks: new challenges and approaches , 1999, IEEE Commun. Mag..

[26]  Ivan Andonovic,et al.  Architecture for large dilated optical TDM switching networks , 1993 .

[27]  Chin-Tau A. Lea,et al.  Multi-log2N networks and their applications in high-speed electronic and photonic switching systems , 1990, IEEE Trans. Commun..

[28]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[29]  Frank Hwang,et al.  The Mathematical Theory of Nonblocking Switching Networks , 1998 .

[30]  A.B. Mohammad,et al.  A space dilated lightwave network - a new approach , 2003, 10th International Conference on Telecommunications, 2003. ICT 2003..

[31]  A. Mullin,et al.  Mathematical Theory of Connecting Networks and Telephone Traffic. , 1966 .

[32]  Kumar N. Sivarajan,et al.  Optical Networks: A Practical Perspective , 1998 .