Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control.

Smad3 transduces the signals of TGF-betas, coupling transmembrane receptor kinase activation to transcriptional control. The membrane-associated molecule SARA (Smad Anchor for Receptor Activation) recruits Smad3 for phosphorylation by the receptor kinase. Upon phosphorylation, Smad3 dissociates from SARA and enters the nucleus, in which its transcriptional activity can be repressed by Ski. Here, we show that SARA and Ski recognize specifically the monomeric and trimeric forms of Smad3, respectively. Thus, trimerization of Smad3, induced by phosphorylation, simultaneously activates the TGF-beta signal by driving Smad3 dissociation from SARA and sets up the negative feedback mechanism by Ski. Structural models of the Smad3/SARA/receptor kinase complex and Smad3/Ski complex provide insights into the molecular basis of regulation.

[1]  Arthur J. Rowe,et al.  Analytical ultracentrifugation in biochemistry and polymer science , 1992 .

[2]  Jeffrey L. Wrana,et al.  Mechanism of activation of the TGF-β receptor , 1994, Nature.

[3]  H. Lodish,et al.  The specificity of the transforming growth factor beta receptor kinases determined by a spatially addressable peptide library. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Massagué,et al.  GS domain mutations that constitutively activate T beta R‐I, the downstream signaling component in the TGF‐beta receptor complex. , 1995, The EMBO journal.

[5]  S. Willis,et al.  Formation and activation by phosphorylation of activin receptor complexes. , 1996, Molecular endocrinology.

[6]  P. Hoodless,et al.  MADR2 Is a Substrate of the TGFβ Receptor and Its Phosphorylation Is Required for Nuclear Accumulation and Signaling , 1996, Cell.

[7]  H. Lodish,et al.  Signaling by chimeric erythropoietin‐TGF‐beta receptors: homodimerization of the cytoplasmic domain of the type I TGF‐beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. , 1996, The EMBO journal.

[8]  R. Derynck,et al.  A kinase subdomain of transforming growth factor‐β (TGF‐β) type I receptor determines the TGF‐β intracellular signaling specificity , 1997 .

[9]  J. Philo An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. , 1997, Biophysical journal.

[10]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[11]  C. Wernstedt,et al.  Phosphorylation of Ser465 and Ser467 in the C Terminus of Smad2 Mediates Interaction with Smad4 and Is Required for Transforming Growth Factor-β Signaling* , 1997, The Journal of Biological Chemistry.

[12]  A. Roberts,et al.  Characterization of Functional Domains within Smad4/DPC4* , 1997, The Journal of Biological Chemistry.

[13]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[14]  Yigong Shi,et al.  A structural basis for mutational inactivation of the tumour suppressor Smad4 , 1997, Nature.

[15]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[16]  Jeffrey L. Wrana,et al.  TβRI Phosphorylation of Smad2 on Ser465 and Ser467 Is Required for Smad2-Smad4 Complex Formation and Signaling* , 1997, The Journal of Biological Chemistry.

[17]  C. Heldin,et al.  The L45 loop in type I receptors for TGF‐β family members is a critical determinant in specifying Smad isoform activation , 1998, FEBS letters.

[18]  Liliana Attisano,et al.  SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor , 1998, Cell.

[19]  H. Lodish,et al.  Oligomeric Structure of Type I and Type II Transforming Growth Factor β Receptors: Homodimers Form in the ER and Persist at the Plasma Membrane , 1998, The Journal of cell biology.

[20]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[21]  Yigong Shi,et al.  The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF‐β receptors , 1998, The EMBO journal.

[22]  R. Derynck,et al.  Smads: transcriptional activators of TGF-beta responses. , 1998, Cell.

[23]  J. Massagué,et al.  Determinants of specificity in TGF-beta signal transduction. , 1998, Genes & development.

[24]  Takeshi Imamura,et al.  Smad proteins exist as monomers in vivo and undergo homo‐ and hetero‐oligomerization upon activation by serine/threonine kinase receptors , 1998, The EMBO journal.

[25]  B. Qin,et al.  Crystal structure of a transcriptionally active Smad4 fragment. , 1999, Structure.

[26]  R. Weinberg,et al.  Interaction of the Ski Oncoprotein with Smad3 Regulates TGF-β Signaling , 1999 .

[27]  K. Miyazono,et al.  c-Ski Acts as a Transcriptional Co-repressor in Transforming Growth Factor-β Signaling through Interaction with Smads* , 1999, The Journal of Biological Chemistry.

[28]  Morgan Huse,et al.  Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12 , 1999, Cell.

[29]  Qiang Zhou,et al.  The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. , 1999, Genes & development.

[30]  A. Roberts TGF-β signaling from receptors to the nucleus , 1999 .

[31]  T. Shioda,et al.  The Smad4 Activation Domain (SAD) Is a Proline-rich, p300-dependent Transcriptional Activation Domain* , 2000, The Journal of Biological Chemistry.

[32]  J. Campisi,et al.  Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Kirsch,et al.  Crystal structure of the BMP-2–BRIA ectodomain complex , 2000, Nature Structural Biology.

[34]  H. Lodish,et al.  Role of Transforming Growth Factor in Human Disease , 2000 .

[35]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[36]  Ester Piek,et al.  Role of Transforming Growth Factor-β Signaling in Cancer , 2000 .

[37]  J. Philo,et al.  A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. , 2000, Analytical biochemistry.

[38]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[39]  J. Massagué,et al.  Structural basis of Smad2 recognition by the Smad anchor for receptor activation. , 2000, Science.

[40]  J. Massagué,et al.  Distinct Oligomeric States of SMAD Proteins in the Transforming Growth Factor-β Pathway* , 2000, The Journal of Biological Chemistry.

[41]  J. Wrana,et al.  Smads as transcriptional co-modulators. , 2000, Current opinion in cell biology.

[42]  R. Weinberg,et al.  Ski/Sno and TGF-β signaling , 2001 .

[43]  A. Roberts,et al.  Response: Re: Role of Transforming Growth Factor-β Signaling in Cancer , 2001 .

[44]  T. Muir,et al.  Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. , 2001, Molecular cell.

[45]  D. Lambright,et al.  Multivalent endosome targeting by homodimeric EEA1. , 2001, Molecular cell.

[46]  Benoy M. Chacko,et al.  The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization , 2001, Nature Structural Biology.

[47]  Benoy M. Chacko,et al.  Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization. , 2001, Biochemistry.

[48]  J Kuriyan,et al.  The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. , 2001, Molecular cell.

[49]  J J Correia,et al.  Structural basis of Smad1 activation by receptor kinase phosphorylation. , 2001, Molecular cell.

[50]  Shashank Deep,et al.  Crystal structure of the human TβR2 ectodomain–TGF-β3 complex , 2002, Nature Structural Biology.

[51]  J. Wrana Phosphoserine-dependent regulation of protein-protein interactions in the Smad pathway. , 2002, Structure.

[52]  A. Hinck,et al.  CRYSTAL STRUCTURE OF THE HUMAN TBR2 ECTODOMAIN-TGF-B3 COMPLEX , 2002 .

[53]  P. Bates,et al.  Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline‐rich motif , 2002, The EMBO journal.