A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes

[1]  T. Kawabata,et al.  Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy , 2021, Nature communications.

[2]  F. Coutrot,et al.  Challenges and Opportunities in the Post-Synthetic Modification of Interlocked Molecules. , 2020, Angewandte Chemie.

[3]  S. Goldup,et al.  Strategies for the Synthesis of Enantiopure Mechanically Chiral Molecules , 2020, Chem.

[4]  W. Buma,et al.  Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes† , 2020, Chemical science.

[5]  J. Berná,et al.  Mechanically Interlocked Catalysts for Asymmetric Synthesis , 2020, ACS Catalysis.

[6]  C. Tian,et al.  Single-Step Enantioselective Synthesis of Mechanically Planar Chiral [2]Rotaxanes Using a Chiral Leaving Group Strategy , 2020, Journal of the American Chemical Society.

[7]  C. Tian,et al.  Weak functional group interactions revealed through metal-free active template rotaxane synthesis , 2020, Nature Communications.

[8]  Andrew W. Heard,et al.  Simplicity in the Design, Operation, and Applications of Mechanically Interlocked Molecular Machines , 2020, ACS central science.

[9]  Kazuko Nakazono,et al.  Mechanical Chirality of Rotaxanes: Synthesis and Function , 2020, Symmetry.

[10]  G. Tizzard,et al.  Rotaxane PtII-complexes: mechanical bonding for chemically robust luminophores and stimuli responsive behaviour† , 2020, Chemical science.

[11]  A. Heard,et al.  Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis , 2019, Chem.

[12]  S. Grimme,et al.  Heterobifunctional Rotaxanes for Asymmetric Catalysis , 2019, Angewandte Chemie.

[13]  Thomas A. Singleton,et al.  Dynamic Control of Chiral Space Through Local Symmetry Breaking in a Rotaxane Organocatalyst. , 2019, Angewandte Chemie.

[14]  K. Rissanen,et al.  Chiroptical inversion of a planar chiral redox-switchable rotaxane† †Electronic supplementary information (ESI) available: Synthetic procedures including full characterisation of new compounds, electrochemical data, crystallographic data and mass spectrometry data. CCDC 1910670. For ESI and crystall , 2019, Chemical science.

[15]  S. Goldup,et al.  An Auxiliary Approach for the Stereoselective Synthesis of Topologically Chiral Catenanes , 2019, Chem.

[16]  M. Baroncini,et al.  Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle , 2019, Journal of the American Chemical Society.

[17]  Jonathan A. Kitchen,et al.  Rotaxane-Based Transition Metal Complexes: Effect of the Mechanical Bond on Structure and Electronic Properties. , 2019, Journal of the American Chemical Society.

[18]  S. Goldup,et al.  Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes , 2018, Angewandte Chemie.

[19]  S. Goldup,et al.  Chirality in rotaxanes and catenanes , 2018, Chemical Society reviews.

[20]  J. Niemeyer,et al.  Chiral Mechanically Interlocked Molecules – Applications of Rotaxanes, Catenanes and Molecular Knots in Stereoselective Chemosensing and Catalysis , 2018, Synlett.

[21]  S. Goldup,et al.  Efficient Multicomponent Active Template Synthesis of Catenanes , 2018, Journal of the American Chemical Society.

[22]  Yoshito Tobe,et al.  The Asymmetry is Derived from Mechanical Interlocking of Achiral Axle and Achiral Ring Components -Syntheses and Properties of Optically Pure [2]Rotaxanes- , 2018, Symmetry.

[23]  N. H. Evans Chiral Catenanes and Rotaxanes: Fundamentals and Emerging Applications , 2017, Chemistry.

[24]  T. Takata,et al.  Induction of Single-Handed Helicity of Polyacetylenes Using Mechanically Chiral Rotaxanes as Chiral Sources. , 2017, Angewandte Chemie.

[25]  S. Grimme,et al.  Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional Brønsted Acid. , 2017, Angewandte Chemie.

[26]  S. Goldup,et al.  The active template approach to interlocked molecules , 2017 .

[27]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[28]  Sundus Erbas-Cakmak,et al.  Asymmetric Catalysis with a Mechanically Point-Chiral Rotaxane , 2016, Journal of the American Chemical Society.

[29]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[30]  F. Coutrot,et al.  A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. , 2014, Angewandte Chemie.

[31]  C. Arróniz,et al.  Strategies for the synthesis of enantiopure compounds focused on organocatalysis , 2012 .

[32]  S. Goldup,et al.  Macrocycle size matters: "small" functionalized rotaxanes in excellent yield using the CuAAC active template approach. , 2011, Angewandte Chemie.

[33]  Y. Makita,et al.  Catalytic Asymmetric Synthesis and Optical Resolution of Planar Chiral Rotaxane , 2007 .

[34]  David A Leigh,et al.  Catalytic "click" rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. , 2006, Journal of the American Chemical Society.

[35]  David A Leigh,et al.  Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. , 2004, Angewandte Chemie.

[36]  J. F. Stoddart,et al.  Precision Molecular Grafting: Exchanging Surrogate Stoppers in [2]Rotaxanes , 2000 .

[37]  F. Vögtle,et al.  Enantiomeric Resolution of Cycloenantiomeric Rotaxane, Topologically Chiral Catenane, and Pretzel-Shaped Molecules: Observation of Pronounced Circular Dichroism , 1997 .

[38]  J. Sauvage,et al.  The separation of optically active copper (I) catenates , 1993 .

[39]  Ernest L. Eliel,et al.  Stereochemistry of Organic Compounds , 1962 .