Diopatra cupreaworm burrow parchment: a cautionary tale of infaunal surface reactivity

[1]  D. Alessi,et al.  Change of the point of zero net proton charge (pHPZNPC) of clay minerals with ionic strength , 2018, Chemical Geology.

[2]  D. Alessi,et al.  Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength , 2018 .

[3]  Y. Ok,et al.  Modified sequential extraction for biochar and petroleum coke: Metal release potential and its environmental implications. , 2017, Bioresource technology.

[4]  D. Alessi,et al.  Field- and Lab-Based Potentiometric Titrations of Microbial Mats from the Fairmont Hot Spring, Canada , 2017 .

[5]  D. Alessi,et al.  Measurements of bacterial mat metal binding capacity in alkaline and carbonate-rich systems , 2017 .

[6]  J. Fein,et al.  Influence of sulfhydryl sites on metal binding by bacteria , 2017 .

[7]  J. Szymanowski,et al.  Characterization of sulfhydryl sites within bacterial cell envelopes using selective site-blocking and potentiometric titrations , 2014 .

[8]  O. Vinn Occurrence, Formation and Function of Organic Sheets in the Mineral Tube Structures of Serpulidae (Polychaeta, Annelida) , 2013, PloS one.

[9]  S. Lalonde,et al.  A SURROGATE APPROACH TO STUDYING THE CHEMICAL REACTIVITY OF BURROW MUCOUS LININGS IN MARINE SEDIMENTS , 2011 .

[10]  K. Konhauser,et al.  Are Animal Burrows a Major Sedimentary Sink for Metals? , 2011 .

[11]  S. Pemberton,et al.  Significance of hypoburrow nodule formation associated with large biogenic sedimentary structures in open-marine bay siliciclastics of the Upper Eocene Birket Qarun Formation, Wadi El-Hitan, Fayum, Egypt , 2011 .

[12]  Jeremy B. Fein,et al.  High- and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis , 2010 .

[13]  S. Lalonde,et al.  Investigating the geochemical impact of burrowing animals: Proton and cadmium adsorption onto the mucus lining of Terebellid polychaete worms , 2010 .

[14]  D. Alessi,et al.  Cadmium adsorption to mixtures of soil components: Testing the component additivity approach , 2010 .

[15]  S. Pemberton,et al.  VARIATION IN BURROW-WALL MICROMORPHOLOGIES OF SELECT INTERTIDAL INVERTEBRATES ALONG THE PACIFIC NORTHWEST COAST, USA: BEHAVIORAL AND DIAGENETIC IMPLICATIONS , 2010 .

[16]  Benjamin F. Turner,et al.  A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings , 2005 .

[17]  F. G. Ferris,et al.  Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. , 2004, Environmental science & technology.

[18]  D. McIlroy,et al.  Faeces, clay minerals and reservoir potential , 2003, Journal of the Geological Society.

[19]  K. Konhauser,et al.  Characterization and Implications of the Cell Surface Reactivity of Calothrix sp. Strain KC97 , 2002, Applied and Environmental Microbiology.

[20]  N. Yee,et al.  Cd adsorption onto bacterial surfaces: A universal adsorption edge? , 2001 .

[21]  D. Kinniburgh,et al.  Generic NICA-Donnan model parameters for proton binding by humic substances. , 2001, Environmental science & technology.

[22]  D. G. Adams,et al.  Cyanobacterial viability during hydrothermal biomineralisation , 2000 .

[23]  H. Clifton,et al.  The ichnology of Modern and Pleistocene brackish-water deposits at Willapa Bay, Washington : Variability in estuarine settings , 1999 .

[24]  C. R. Lovell,et al.  Distributions of total and active bacteria in biofilms lining tubes of the onuphid polychaete Diopatra cuprea , 1999 .

[25]  P. Bjerregaard,et al.  Influence of bioturbating animals on flux of cadmium into estuarine sediment , 1998 .

[26]  Nita Sahai,et al.  Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water , 1996 .

[27]  D. Over Trace metals in burrow walls and sediments, Georgia Bight, USA , 1990 .

[28]  B. Whitton,et al.  Isolation and Chemical Analysis of the Sheaths of the Filamentous Cyanobacteria Calothrix parietina and C. scopulorum , 1988 .

[29]  A. Fattom,et al.  Hydrophobicity as an Adhesion Mechanism of Benthic Cyanobacteria , 1984, Applied and environmental microbiology.

[30]  R. Aller The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry , 1983 .

[31]  A. C. Myers Tube-worm-sediment relationships of Diopatra cuprea (Polychaeta: Onuphidae) , 1972 .

[32]  C. Mangum,et al.  Distribution and feeding in the onuphid polychaete, Diopatra cuprea (Bosc) , 1968 .

[33]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .