Taming Cross-Technology Interference for Wi-Fi and ZigBee Coexistence Networks

Recent studies show that Wi-Fi interference has been a major problem for low power urban sensing technology ZigBee networks. Existing approaches for dealing with such interferences often modify either the ZigBee nodes or Wi-Fi nodes. However, massive deployment of ZigBee nodes and uncooperative Wi-Fi users call for innovative cross-technology coexistence without intervening legacy systems. In this work, we investigate the Wi-Fi and ZigBee coexistence when ZigBee is the interested signal. Typically, the duration of transmitting a ZigBee data packet is longer than that of a Wi-Fi packet. Mitigating short duration Wi-Fi interference (called <italic>flash</italic>) in long duration ZigBee data (called <italic>smog</italic>) is challenging. To address these challenges, we propose ZIMO: a sink-based MIMO design for harmony coexistence of ZigBee and Wi-Fi networks with the goal of protecting the ZigBee data packets from being interfered by high-power cross-technology signals. The key insight is to properly exploit opportunities resulted from differences between Wi-Fi and ZigBee, and bridge the gap between interested data and cross technology signals. Also, extracting the channel coefficient of Wi-Fi and ZigBee will enhance other coexistence technologies such as TIMO <xref ref-type="bibr" rid="ref1">[1]</xref> . We implement a prototype in GNURadio-USRP N200, and our extensive evaluations under real wireless conditions show that ZIMO can improve ZigBee network throughput up to 1.9<inline-formula><tex-math notation="LaTeX">$\times$</tex-math> <alternatives><inline-graphic xlink:type="simple" xlink:href="yang-ieq1-2442252.gif"/></alternatives></inline-formula>, with 1.5 <inline-formula><tex-math notation="LaTeX">$\times$</tex-math><alternatives> <inline-graphic xlink:type="simple" xlink:href="yang-ieq2-2442252.gif"/></alternatives></inline-formula> in media, and 1.1<inline-formula> <tex-math notation="LaTeX">$\times$</tex-math><alternatives><inline-graphic xlink:type="simple" xlink:href="yang-ieq3-2442252.gif"/> </alternatives></inline-formula> to 1.9<inline-formula><tex-math notation="LaTeX">$\times$</tex-math><alternatives> <inline-graphic xlink:type="simple" xlink:href="yang-ieq4-2442252.gif"/></alternatives></inline-formula> for Wi-Fi network as byproduct in ZigBee signal recovery.

[1]  Dina Katabi,et al.  Zigzag decoding: combating hidden terminals in wireless networks , 2008, SIGCOMM '08.

[2]  Rong Zheng,et al.  WiCop: Engineering WiFi Temporal White-Spaces for Safe Operations of Wireless Personal Area Networks in Medical Applications , 2011, IEEE Transactions on Mobile Computing.

[3]  Srikanth V. Krishnamurthy,et al.  ARES: an anti-jamming reinforcement system for 802.11 networks , 2009, CoNEXT '09.

[4]  Haichen Shen,et al.  MPAP: virtualization architecture for heterogenous wireless APs , 2011, CCRV.

[5]  Dina Katabi,et al.  Interference alignment and cancellation , 2009, SIGCOMM '09.

[6]  Thomas Schmid NESL GNU Radio 802 . 15 . 4 En-and Decoding , 2006 .

[7]  P. Castiglione,et al.  IEEE 802 . 11 p Transmission Using GNURadio , 2010 .

[8]  David Wetherall,et al.  Taking the sting out of carrier sense: interference cancellation for wireless LANs , 2008, MobiCom '08.

[9]  Yunhao Liu,et al.  CitySee: Urban CO2 monitoring with sensors , 2012, 2012 Proceedings IEEE INFOCOM.

[10]  Kang G. Shin,et al.  Adaptive Subcarrier Nulling: Enabling partial spectrum sharing in wireless LANs , 2011, 2011 19th IEEE International Conference on Network Protocols.

[11]  S. Katti,et al.  Picasso: flexible RF and spectrum slicing , 2012, CCRV.

[12]  Kang G. Shin,et al.  Cooperative Carrier Signaling: Harmonizing Coexisting WPAN and WLAN Devices , 2013, IEEE/ACM Transactions on Networking.

[13]  Yanmin Zhu,et al.  WiBee: Building WiFi radio map with ZigBee sensor networks , 2012, 2012 Proceedings IEEE INFOCOM.

[14]  Tao Jin,et al.  WiZi-Cloud: Application-transparent dual ZigBee-WiFi radios for low power internet access , 2011, 2011 Proceedings IEEE INFOCOM.

[15]  Andreas Terzis,et al.  Surviving wi-fi interference in low power ZigBee networks , 2010, SenSys '10.

[16]  Dina Katabi,et al.  Learning to share: narrowband-friendly wideband networks , 2008, SIGCOMM '08.

[17]  Guoliang Xing,et al.  Beyond co-existence: Exploiting WiFi white space for Zigbee performance assurance , 2010, The 18th IEEE International Conference on Network Protocols.

[18]  Srinivasan Seshan,et al.  Clearing the RF smog: making 802.11n robust to cross-technology interference , 2011, SIGCOMM.

[19]  Wei Wang,et al.  SAM: enabling practical spatial multiple access in wireless LAN , 2009, MobiCom '09.

[20]  Suman Banerjee,et al.  Airshark: detecting non-WiFi RF devices using commodity WiFi hardware , 2011, IMC '11.

[21]  R.N. Murty,et al.  CitySense: An Urban-Scale Wireless Sensor Network and Testbed , 2008, 2008 IEEE Conference on Technologies for Homeland Security.

[22]  Guoliang Xing,et al.  ZiFi: wireless LAN discovery via ZigBee interference signatures , 2010, MobiCom.

[23]  Ranveer Chandra,et al.  Weeble: enabling low-power nodes to coexist with high-power nodes in white space networks , 2012, CoNEXT '12.