Pair wise training for stacked convolutional autoencoders using small scale images

[1]  Fabio A. González,et al.  Supervised Greedy Layer-Wise Training for Deep Convolutional Networks with Small Datasets , 2015, ICCCI.

[2]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[3]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[4]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[5]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[6]  Tapani Raiko,et al.  Denoising autoencoder with modulated lateral connections learns invariant representations of natural images , 2015, ICLR.

[7]  Mohsen Guizani,et al.  Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network , 2017 .

[8]  Volodymyr Turchenko,et al.  Creation of a deep convolutional auto-encoder in Caffe , 2015, 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS).

[9]  Wei Xiong,et al.  Stacked Convolutional Denoising Auto-Encoders for Feature Representation , 2017, IEEE Transactions on Cybernetics.

[10]  Tahir Q. Syed,et al.  Ladder Networks: Learning under Massive Label Deficit , 2017 .

[11]  Brendan J. Frey,et al.  A Winner-Take-All Method for Training Sparse Convolutional Autoencoders , 2014, ArXiv.

[12]  Yu-Bin Yang,et al.  Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections , 2016, ArXiv.

[13]  Jinwen Ma,et al.  Stacked Auto-Encoders for Feature Extraction with Neural Networks , 2016, BIC-TA.