Efficient parameterization of large-scale dynamic models based on relative measurements

MOTIVATION Mechanistic models of biochemical reaction networks facilitate the quantitative understanding of biological processes and the integration of heterogeneous datasets. However, some biological processes require the consideration of comprehensive reaction networks and therefore large-scale models. Parameter estimation for such models poses great challenges, in particular when the data are on a relative scale. RESULTS Here, we propose a novel hierarchical approach combining (i) the efficient analytic evaluation of optimal scaling, offset, and error model parameters with (ii) the scalable evaluation of objective function gradients using adjoint sensitivity analysis. We evaluate the properties of the methods by parameterizing a pan-cancer ordinary differential equation model (>1000 state variables, >4000 parameters) using relative protein, phospho-protein and viability measurements. The hierarchical formulation improves optimizer performance considerably. Furthermore, we show that this approach allows estimating error model parameters with negligible computational overhead when no experimental estimates are available, providing an unbiased way to weight heterogeneous data. Overall, our hierarchical formulation is applicable to a wide range of models, and allows for the efficient parameterization of large-scale models based on heterogeneous relative measurements. SUPPLEMENTARY INFORMATION Supplementary information are available at Bioinformatics online. Supplementary code and data are available online at http://doi.org/10.5281/zenodo.3254429 and http://doi.org/10.5281/zenodo.3254441.

[1]  Walter Kolch,et al.  Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients , 2015, Science Signaling.

[2]  Jan Hasenauer,et al.  Hierarchical optimization for the efficient parametrization of ODE models , 2018, Bioinform..

[3]  Jan Hasenauer,et al.  Robust parameter estimation for dynamical systems from outlier‐corrupted data , 2017, Bioinform..

[4]  Heiner Koch,et al.  Pharmacoproteomic characterisation of human colon and rectal cancer , 2017, Molecular systems biology.

[5]  Daniel Weindl,et al.  Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-Cancer Pathway Model. , 2018, Cell systems.

[6]  H. Lehrach,et al.  The “Virtual Patient” system: modeling cancer using deep sequencing technologies for personalized cancer treatment , 2012, Journal für Verbraucherschutz und Lebensmittelsicherheit.

[7]  Jens Timmer,et al.  Benchmark problems for dynamic modeling of intracellular processes , 2018, bioRxiv.

[8]  Boris N. Kholodenko,et al.  Performance of objective functions and optimisation procedures for parameter estimation in system biology models , 2017, npj Systems Biology and Applications.

[9]  Julio R. Banga,et al.  Parallel Metaheuristics in Computational Biology: An Asynchronous Cooperative Enhanced Scatter Search Method , 2015, ICCS.

[10]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[11]  Fabian J. Theis,et al.  Parameter estimation for dynamical systems with discrete events and logical operations , 2016, Bioinform..

[12]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[13]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[14]  Marc R. Birtwistle,et al.  A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens , 2018, PLoS Comput. Biol..

[15]  Yiling Lu,et al.  Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays. , 2017, Cancer cell.

[16]  Jan Hasenauer,et al.  Evaluation of Derivative-Free Optimizers for Parameter Estimation in Systems Biology , 2018 .

[17]  Jun Li,et al.  TCPA: a resource for cancer functional proteomics data , 2013, Nature Methods.

[18]  R. Baker,et al.  Mechanistic models versus machine learning, a fight worth fighting for the biological community? , 2018, Biology Letters.

[19]  Hans Lehrach,et al.  Article Commentary: Predictive Modeling of Drug Treatment in the Area of Personalized Medicine , 2015 .

[20]  Mathias Wilhelm,et al.  Global proteome analysis of the NCI-60 cell line panel. , 2013, Cell reports.

[21]  M GayDavid,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983 .

[22]  Heinz Koeppl,et al.  Inverse problems from biomedicine , 2012, Journal of Mathematical Biology.

[23]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[24]  Julio R. Banga,et al.  Benchmarking optimization methods for parameter estimation in large kinetic models , 2018, bioRxiv.

[25]  Bertram Klinger,et al.  Drug Resistance Mechanisms in Colorectal Cancer Dissected with Cell Type-Specific Dynamic Logic Models. , 2017, Cancer research.

[26]  Krzysztof Fujarewicz,et al.  On fitting of mathematical models of cell signaling pathways using adjoint systems. , 2005, Mathematical biosciences and engineering : MBE.

[27]  Fabian J. Theis,et al.  Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks , 2016, bioRxiv.

[28]  Jens Timmer,et al.  Predicting ligand-dependent tumors from multi-dimensional signaling features , 2017, npj Systems Biology and Applications.

[29]  Fabian J Theis,et al.  Lessons Learned from Quantitative Dynamical Modeling in Systems Biology , 2013, PloS one.