Reversible causal graph dynamics: invertibility, block representation, vertex-preservation
暂无分享,去创建一个
P. Arrighi | S. Martiel | S. Perdrix | S. Perdrix | P. Arrighi | S. Martiel
[1] Eric Rémila,et al. Hyperbolic Recognition by Graph Automata , 2002, ICALP.
[2] Vincent Nesme,et al. Cellular automata over generalized Cayley graphs , 2017, Mathematical Structures in Computer Science.
[3] Gilles Dowek,et al. Causal Graph Dynamics , 2012, ICALP.
[4] Simon Perdrix,et al. Block Representation of Reversible Causal Graph Dynamics , 2015, FCT.
[5] Michael Löwe,et al. Algebraic Approach to Single-Pushout Graph Transformation , 1993, Theor. Comput. Sci..
[6] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[7] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[8] Hartmut Ehrig,et al. Parallel and Distributed Derivations in the Single-Pushout Approach , 1993, Theor. Comput. Sci..
[9] Jérôme Olivier Durand-Lose,et al. Representing Reversible Cellular Automata with Reversible Block Cellular Automata , 2001, DM-CCG.
[10] Jérémie Chalopin,et al. Deterministic Symmetric Rendezvous in Arbitrary Graphs: Overcoming Anonymity, Failures and Uncertainty , 2013 .
[11] Misha Gromov,et al. Endomorphisms of symbolic algebraic varieties , 1999 .
[12] J. Kari. Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.
[13] Vincent Nesme,et al. Unitarity plus causality implies localizability , 2007, J. Comput. Syst. Sci..
[14] Annegret Habel,et al. Amalgamation of Graph Transformations: A Synchronization Mechanism , 1987, J. Comput. Syst. Sci..
[15] Vincent Nesme,et al. Generalized Cayley Graphs and Cellular Automata over them , 2012, ArXiv.
[16] R. Sorkin. Time-evolution problem in regge calculus , 1975 .
[17] Gabriele Taentzer,et al. Parallel High-Level Replacement Systems , 1997, Theor. Comput. Sci..
[18] K. Tomita,et al. Graph automata: natural expression of self-reproduction , 2002 .
[19] Cosimo Laneve,et al. Formal molecular biology , 2004, Theor. Comput. Sci..
[20] Vincent Nesme,et al. A simple block representation of reversible cellular automata with time-symmetry , 2012, ArXiv.
[21] Luidnel Maignan,et al. Global Graph Transformations , 2015, GCM@ICGT.
[22] David A. Meyer,et al. Modeling dynamical geometry with lattice gas automata , 1998 .
[23] D. Meyer,et al. Lattice gas simulations of dynamical geometry in two dimensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Simone Severini,et al. Quantum bose-hubbard model with an evolving graph as a toy model for emergent spacetime , 2009, 0911.5075.
[25] Gabriele Taentzer,et al. Parallel and distributed graph transformation - formal description and application to communication-based systems , 1996, Berichte aus der Informatik.
[26] Jarkko Kari,et al. On the Circuit Depth of Structurally Reversible Cellular Automata , 1999, Fundam. Informaticae.
[27] Simon Perdrix,et al. Reversible Causal Graph Dynamics , 2015, RC.