On the Eigenvalue Power Law

We show that the largest eigenvalues of graphs whose highest degrees are Zipf-like distributed with slope a are distributed according to a power law with slope α/2. This follows as a direct and almost certain corollary of the degree power law. Our result has implications for the singular value decomposition method in information retrieval.

[1]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[2]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[3]  Anna R. Karlin,et al.  Spectral analysis of data , 2001, STOC '01.

[4]  Fan Chung Graham,et al.  A Random Graph Model for Power Law Graphs , 2001, Exp. Math..

[5]  Ibrahim Matta,et al.  On the origin of power laws in Internet topologies , 2000, CCRV.

[6]  Anna R. Karlin Web Search via Hub Synthesis , 2001, RANDOM-APPROX.

[7]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Alan M. Frieze,et al.  A General Model of Undirected Web Graphs , 2001, ESA.

[9]  Anukool Lakhina,et al.  BRITE: Universal Topology Generation from a User''s Perspective , 2001 .

[10]  Anna R. Karlin Spectral Analysis for Data Mining , 2001, ALENEX.

[11]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[12]  Chris Ding,et al.  On the Use of Singular Value Decomposition for Text Retrieval , 2000 .

[13]  B. Bollobás The evolution of random graphs , 1984 .

[14]  Amos Fiat,et al.  Web search via hub synthesis , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[15]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[16]  Christopher R. Palmer,et al.  Generating network topologies that obey power laws , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[17]  Eli Upfal,et al.  Stochastic models for the Web graph , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[18]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[19]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[20]  Ravi Kumar,et al.  Self-similarity in the web , 2001, TOIT.

[21]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[22]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[23]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[24]  Christos Gkantsidis,et al.  Spectral analysis of Internet topologies , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[25]  Santosh S. Vempala,et al.  Latent Semantic Indexing , 2000, PODS 2000.

[26]  L. Lovász Combinatorial problems and exercises , 1979 .

[27]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Fan Chung Graham,et al.  Random evolution in massive graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.