First-principles study of d 0 magnetism in group-IV-doped monolayer GaN

. In this study, the structural and magnetic properties of group-IV-doped monolayer GaN were systematically investigated by first-principles calculations. Among all the group-IV dopants, only Ge and Sn atoms prefer to substitute the Ga atom of monolayer GaN and form a buckling structure with a magnetic moment of 1 µ B per dopant. The N-rich growth conditions are more desirable for such a substitution process than the Ga-rich grow conditions. With a large diffusion barrier vertical to the monolayer GaN, both Ge and Sn atoms tend to stay on the same side of monolayer GaN with an antiferromagnetic coupling between them. When intrinsic vacancies exist in monolayer GaN, the magnetic moments of group-IV dopants vanish due to the charge transferring from the dopants to Ga or N vacancies. The precondition creation of Ga vacancies, a plentiful supply of Ge or Sn dopants, and the N-rich conditions can be adopted to maintain the magnetic properties of group-IV-doped monolayer GaN. These theoretical results help to promote the applications of 2D GaN-based materials in spintronics.

[1]  S. Yadav,et al.  Non-magnetic adsorbent functionalized magnetism and spin filtering in a two-dimensional GaN monolayer , 2022, Journal of Physics and Chemistry of Solids.

[2]  Y. Liu,et al.  The Theoretical Study of Unexpected Magnetism in 2D Si-Doped AlN , 2022, Frontiers in Physics.

[3]  P. Radovanovic,et al.  On the Origin of d0 Magnetism in Transparent Metal Oxide Nanocrystals , 2021, The Journal of Physical Chemistry C.

[4]  M. Fakhri,et al.  Gallium Nitride –Based Photodiode: A review , 2021 .

[5]  Somayeh Behzad Two-Dimensional Gallium Nitride , 2020 .

[6]  R. M. Minyaev,et al.  Computational Prediction of the Low‐Temperature Ferromagnetic Semiconducting 2D SiN Monolayer , 2019, physica status solidi (b).

[7]  Fuchun Zhang,et al.  First-principles study on electromagnetic properties of Mn-doped GaN , 2019, Ferroelectrics.

[8]  Haisheng Li,et al.  Tunable magnetism in defective MoS2 monolayer with nonmetal atoms adsorption , 2019, Superlattices and Microstructures.

[9]  J. Coey,et al.  Epitaxial lift-off of ferromagnetic (Ga,Mn)As nanoflakes for van der Waals heterostructures , 2019, Nature Materials.

[10]  H. Cui,et al.  Repairing the N-vacancy in an InN monolayer using NO molecules: a first-principles study , 2019, Nanoscale advances.

[11]  I. Roqan,et al.  Tuning the Electronic Properties of Hexagonal Two-Dimensional GaN Monolayers via Doping for Enhanced Optoelectronic Applications , 2018, ACS Applied Nano Materials.

[12]  Hongxia Liu,et al.  Magnetism investigation of GaN monolayer doped with group VIII B transition metals , 2018, Journal of Materials Science.

[13]  E. Aktürk,et al.  Chemical and substitutional doping, and anti-site and vacancy formation in monolayer AlN and GaN. , 2018, Physical chemistry chemical physics : PCCP.

[14]  Lingling Wang,et al.  Electronic and magnetic properties of SnS 2 monolayer doped with non-magnetic elements , 2018 .

[15]  R. González,et al.  Vacancy Charged Defects in Two-Dimensional GaN , 2018 .

[16]  Yumin Liu,et al.  Point defects and composition in hexagonal group-III nitride monolayers: A first-principles calculation , 2017 .

[17]  Henrique A. C. Braga,et al.  A review on gallium nitride switching power devices and applications , 2017, 2017 Brazilian Power Electronics Conference (COBEP).

[18]  Lingling Wang,et al.  A comparative study on magnetic properties of Mo doped AlN, GaN and InN monolayers from first-principles , 2017 .

[19]  Xiaoyang Chen,et al.  Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study , 2017 .

[20]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[21]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[22]  S. Datta,et al.  Two-dimensional gallium nitride realized via graphene encapsulation. , 2016, Nature materials.

[23]  Xiao‐Hong Li,et al.  Exotic d0 magnetism in partial hydrogenated silicene , 2016 .

[24]  Z. Xiong,et al.  Tuning magnetism of monolayer GaN by vacancy and nonmagnetic chemical doping , 2016 .

[25]  Yuewen Mu Chemical Functionalization of GaN Monolayer by Adatom Adsorption , 2015 .

[26]  L. M. Ramaniah,et al.  Exploring d0 magnetism in doped SnO2–a first principles DFT study , 2015 .

[27]  E. Kan,et al.  Electronic and magnetic properties of an AlN monolayer doped with first-row elements: a first-principles study , 2015 .

[28]  Yongqing Cai,et al.  Enhanced ferromagnetic properties ofCudoped two-dimensionalGaNmonolayer , 2015 .

[29]  S. Karna,et al.  Effect of Si doping on the electronic properties of BN monolayer. , 2014, Nanoscale.

[30]  J. Bläsing,et al.  High Si and Ge n-type doping of GaN doping - Limits and impact on stress , 2012 .

[31]  A. T. Kalghatgi,et al.  Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films , 2011 .

[32]  B. Delley,et al.  Band gap engineering of wurtzite and zinc-blende GaN/AlN superlattices from first principles , 2010 .

[33]  K. Adhikary,et al.  Gallium Nitride: Synthesis and Characterization , 2007 .

[34]  R. Nieminen,et al.  Nitrogen vacancies as major point defects in gallium nitride. , 2006, Physical review letters.

[35]  T. Jungwirth,et al.  Theory of ferromagnetic (III, Mn) V semiconductors , 2006, cond-mat/0603380.

[36]  B. Delley,et al.  Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. , 2005, Physical review letters.

[37]  W. Schaff,et al.  n-type doping of wurtzite GaN with germanium grown with plasma-assisted molecular beam epitaxy , 2004 .

[38]  H. Ohno,et al.  Ferromagnetism in III-V and II-VI semiconductor structures , 2000, cond-mat/0002450.

[39]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[42]  H. Jónsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1994, chem-ph/9411012.

[43]  Heinz Schulz,et al.  Crystal structure refinement of AlN and GaN , 1977 .

[44]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[45]  Minglei Sun,et al.  Magnetism in non-metal atoms adsorbed graphene-like gallium nitride monolayers , 2018 .