Properties of Quantum Languages

The class of quantum languages Q(Σ) over an alphabet Σ is the class of languages accepted by quantum automata. We study properties of Q(Σ) and compare Q(Σ) with the class of regular languages R(Σ). It is shown that Q(Σ) is closed under union, intersection, and reversal but is not closed under complementation, concatenation, or Kleene star. It is also shown that Q(Σ) and R(Σ) are incomparable. Finally, we prove that L ∈ Q(Σ) if and only if L admits a transition amplitude function satisfying a certain property and a similar characterization is given for R(Σ).

[1]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[2]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[3]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[4]  Cynthia Dwork,et al.  A Time Complexity Gap for Two-Way Probabilistic Finite-State Automata , 1990, SIAM J. Comput..

[5]  Azaria Paz,et al.  Introduction to Probabilistic Automata , 1971 .

[6]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[7]  R. Feynman Simulating physics with computers , 1999 .

[8]  Stanley Gudder,et al.  Quantum Automata: An Overview , 1999 .

[9]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[10]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[11]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[12]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Stanley Gudder,et al.  Basic Properties of Quantum Automata , 2000 .

[14]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  R. Feynman Quantum mechanical computers , 1986 .