A compact light source: Design and technical feasibility study of a laser-electron storage ring X-ray source

Thomson scattering infrared photons off energetic electrons provides a mechanism to produce hard X-rays desirable for applied sciences research. Using a small, modest energy (25MeV) electron storage ring together with a resonantly-driven optical storage cavity, a narrow spectrum of hard X-rays could be produced with the quality and monochromatic intensity approaching that of beamline sources at large synchrotron radiation laboratories. The general design of this X-ray source as well as its technical feasibility are presented. In particular, the requirements of optical pulse gain enhancement in an external cavity are described and experimentally demonstrated using a CW mode-locked laser.

[1]  Y. Xiang Focus Retrocollimated Interferometry for Long-Radius-of-Curvature Measurement. , 2001, Applied optics.

[2]  C. C. Lee,et al.  Low-Loss Dielectric Mirror with Ion-Beam-Sputtered TiO 2-SiO 2 Mixed Films. , 2001, Applied optics.

[3]  K Ueda,et al.  193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers. , 1993, Optics letters.

[4]  Timothy Day Frequency-stabilized solid state lasers for coherent optical communications , 1991 .

[5]  N. Langford,et al.  Cavity-augmented frequency tripling of a continuous wave mode-locked laser , 2001 .

[6]  H. A. Schwettman,et al.  PULSE-STACKED CAVITY RING-DOWN SPECTROSCOPY , 1999 .

[7]  D. Z. Anderson,et al.  Alignment of resonant optical cavities. , 1984, Applied optics.

[8]  Klaus G. Steffen,et al.  High energy beam optics , 1965 .

[9]  R. Anderson,et al.  The HELIOS series of advanced, synchrotron based, X-ray sources , 1994 .

[10]  Robert Windeler,et al.  Direct RF to optical frequency measurements with a femtosecond laser comb , 2000, Conference on Precision Electromagnetic Measurements. Conference Digest. CPEM 2000 (Cat. No.00CH37031).

[11]  Jun Ye,et al.  Long-term carrier-envelope phase coherence. , 2002, Optics letters.

[12]  R. F. Teehan,et al.  Phase noise transfer in resonant optical cavities , 2001 .

[13]  R. Li,et al.  The impact of coherent synchrotron radiation on the beam transport of short bunches , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[14]  Eric Esarey,et al.  Tunable, short pulse hard x‐rays from a compact laser synchrotron source , 1992 .

[15]  R. Ruth,et al.  Laser-Electron Storage Ring , 1998 .

[16]  M. Yasumoto,et al.  Optical damage of multi-layer mirrors for UV-FEL resonator induced with intense pico-second pulse FELs and Nd:YLF lasers , 2000 .

[17]  J. Drenth Principles of protein x-ray crystallography , 1994 .

[18]  R. Hauck,et al.  Misalignment sensitivity of optical resonators. , 1980, Applied optics.

[19]  John A. Macken,et al.  Alignment-insensitive resonators using focusing corner cubes , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[20]  G. Margaritondo,et al.  Coherence-enhanced synchrotron radiology: simple theory and practical applications , 2002 .

[21]  Michael Borland,et al.  Small-angle Thomson scattering of ultrafast laser pulses for bright, sub-100-fs x-ray radiation , 2002 .

[22]  Benno Willke,et al.  Dynamic response of a Fabry–Perot interferometer , 1999 .

[23]  G. Sutton,et al.  Frequency-stabilized mode-locked solid-state laser system for precision range-Doppler imaging , 1993 .

[24]  R. E. Sherriff Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences , 1998 .

[25]  Helmut Wiedemann,et al.  Particle Accelerator Physics Basic Principles and Linear Beam Dynamics , 1993 .

[26]  S. Ritter,et al.  Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5). , 2001, Optics Letters.

[27]  H. Yamada,et al.  Development of the hard X-ray source based on a tabletop electron storage ring , 2001 .

[28]  H. Alan Schwettman,et al.  Pulse stacking in the SCA/FEL external cavity , 1997 .

[29]  A. Ferguson,et al.  Efficient generation of picosecond pulses at 243 nm , 1990 .

[30]  Philip W. Baumeister,et al.  Optical coating technology , 1998 .

[31]  I. Kataoka,et al.  Ultra-High Quality Cavity with 1.5 ppm Loss at 1064 nm , 1996 .

[32]  M. Khokonov,et al.  THE RELATIONSHIP OF CHANNELING RADIATION TO THOMSON SCATTERING AND THE RELATIVE EFFICIENCY OF X-RAY PRODUCTION BY INTENSE ELECTRON BEAMS , 1998 .

[33]  A. Sali,et al.  Protein Structure Prediction and Structural Genomics , 2001, Science.

[34]  A synchrotron design for macromolecular structure determination , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[35]  David Garzella,et al.  High-performance deep-ultraviolet optics for free-electron lasers. , 2002, Applied optics.

[36]  K. Kusche,et al.  Ultra-bright X-ray generation using inverse Compton scattering of picosecond CO/sub 2/ laser pulses , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[37]  Very high Q frequency‐locked Fabry–Perot cavity , 1996 .

[38]  T F Johnston,et al.  Beam propagation (m(2)) measurement made as easy as it gets: the four-cuts method. , 1998, Applied optics.

[39]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[40]  Matching X-ray source, optics and detectors to protein crystallography requirements. , 1999, Acta crystallographica. Section D, Biological crystallography.

[41]  A. Cutolo,et al.  Alignment and performance of almost concentric resonators for low gain free-electron lasers. , 1987, Applied optics.

[42]  M. Zucker,et al.  Improved multistage wide band laser frequency stabilization , 1997 .

[43]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[44]  K Ueda,et al.  Accurate measurement of the radius of curvature of a concave mirror and the power dependence in a high-finesse Fabry-Perot interferometer. , 1995, Applied optics.

[45]  James L. Jones,et al.  Laser-compton scattering from a 20 MeV electron beam , 2002 .

[46]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[47]  Fabien Bretenaker,et al.  Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses , 1997 .

[48]  V. Laude,et al.  Arbitrary dispersion control of ultrashort optical pulses with acoustic waves , 2000 .

[49]  R. Ruth,et al.  Radiative cooling of relativistic electron beams , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[50]  H. Wiedemann Particle accelerator physics , 1993 .

[51]  C. Nave,et al.  Radiation damage to crystalline biological molecules: current view. , 2002, Journal of synchrotron radiation.

[52]  U. Keller,et al.  Carrier–envelope-offset dynamics and stabilization of femtosecond pulses , 2002, CLEO 2002.

[53]  J Reichert,et al.  Accurate measurement of large optical frequency differences with a mode-locked laser. , 1999, Optics letters.

[54]  John L. Hall,et al.  Laser stabilization at the millihertz level , 1988 .

[55]  E Castelli,et al.  Mammography with synchrotron radiation: phase-detection techniques. , 2000, Radiology.

[57]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[58]  John Van De Vegte,et al.  Feedback control systems , 1986 .

[59]  Chu,et al.  Energy measurement of relativistic electron beams by laser Compton scattering. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  E. Sarachik,et al.  Classical theory of the scattering of intense laser radiation by free electrons , 1970 .

[61]  Alex Abramovici,et al.  Feedback Control Systems: A Fast-Track Guide for Scientists and Engineers , 2000 .

[62]  E. Burtin,et al.  Compton scattering off polarized electrons with a high-finesse Fabry–Pérot Cavity at JLab , 2001 .

[63]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[64]  V. Shiltsev,et al.  Very fast kicker with high repetition rate for accelerator applications , 1997 .

[65]  S. Doniach Fourth-generation X-ray sources: some possible applications to biology. , 2000, Journal of Synchrotron Radiation.

[66]  M. Venturini Study of intrabeam scattering in low-energy electron rings , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[67]  C. Bohn Coherent Synchrotron Radiation: Theory and Experiments , 2002 .

[68]  E. Esarey Laser cooling of electron beams via Thomson scattering , 2000 .

[69]  Ady Arie,et al.  Performance analysis of Drever-Hall laser frequency stabilization using a proportional+integral servo , 1997 .

[70]  B. Ripin,et al.  TIME-RESOLVED MEASUREMENTS OF X-RAY DAMAGE TO OPTICAL COATINGS , 1997 .

[71]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[72]  L. Nahon,et al.  Mirror degradation and heating in storage ring FELs , 1995 .

[73]  N Uehara,et al.  Ultralow-loss mirror of the parts-in-10(6) level at 1064 nm. , 1995, Optics letters.

[74]  Marie-Emmanuelle Couprie,et al.  Toward resistant UV mirrors at 200 nm for free electron lasers: manufacture, characterizations, and degradation tests , 2000, SPIE Optics + Photonics.

[75]  Tomohisa Mikado,et al.  Degradation and restoration of dielectric-coated cavity mirrors in the NIJI-IV FEL , 1995 .

[76]  F. Bayer-Helms Coupling coefficients of an incident wave and the modes of a spherical optical resonator in the case of mismatching and misalignment. , 1984, Applied optics.

[77]  Alex Abramovici,et al.  Feedback Control Systems , 2000 .