Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm2. We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and o the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.

G. W. Pratt | P. A. R. Ade | J. Aumont | S. Masi | N. Ponthieu | J. R. Bond | L. Toffolatti | F. Pasian | B. P. Crill | W. A. Holmes | G. Savini | J. D. Soler | W. Hovest | A. Catalano | M. Frailis | J. Borrill | A. Gruppuso | E. Hivon | L. Montier | G. Morgante | P. Natoli | F. Piacentini | M. Remazeilles | F. Cuttaia | L. Terenzi | O. Dor'e | M. Maris | S. Galeotta | M. Bersanelli | C. Burigana | N. Mandolesi | S. Plaszczynski | E. Pointecouteau | B. Maffei | L. Pagano | W. C. Jones | V. Stolyarov | G. Polenta | F. Pajot | I. Ristorcelli | F. Perrotta | V. Guillet | S. R. Hildebrandt | C. A. Oxborrow | A. Moneti | D. Santos | H. K. Eriksen | C. Dickinson | A. J. Banday | C. R. Lawrence | A. Mennella | P. B. Lilje | D. Herranz | D. L. Harrison | B. D. Wandelt | E. Falgarone | J.-F. Cardoso | K. Ganga | I. K. Wehus | N. Oppermann | D. Hanson | G. Lagache | L. Bonavera | P. Vielva | N. Aghanim | X. Dupac | J. P. Rachen | A. Zacchei | D. Maino | L. Perotto | M. Douspis | J. F. Mac'ias-P'erez | J. Delabrouille | S. Matarrese | L. Valenziano | A. Benoit-L'evy | A. Zonca | T. S. Kisner | E. Calabrese | M. Arnaud | M. Tomasi | A. H. Jaffe | O. Forni | K. Ferriere | F. Levrier | H. C. Chiang | S. Donzelli | F. Couchot | D. J. Marshall | F. Boulanger | P. M. Lubin | D. Novikov | P. Mazzotta | A. Gregorio | R. B. Barreiro | B. Rusholme | D. Scott | A. Ducout | C. Renault | D. Munshi | R. Keskitalo | E. Franceschi | L. Danese | C. Baccigalupi | L. Mendes | H. U. Norgaard-Nielsen | J. M. Diego | G. Hurier | M. Lattanzi | W. T. Reach | M. Kunz | H. Kurki-Suonio | V. Pettorino | L. Popa | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | S. Colombi | A. Melchiorri | V. Pettorino | J. Rubino-Mart'in | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | A. Lasenby | B. Wandelt | F. Bouchet | S. Matarrese | P. Ade | J. Borrill | P. Bernardis | A. Jaffe | J. Bond | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | G. Efstathiou | J. Diego | A. Benoit-Lévy | A. Gregorio | M. Ashdown | C. Lawrence | B. Rusholme | R. Davis | T. Kisner | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | W. Reach | F. Boulanger | H. Nørgaard-Nielsen | R. Davies | C. Dickinson | M. Arnaud | J. Aumont | E. Battaner | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | L. Bonavera | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | H. Chiang | L. Colombo | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | E. Falgarone | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | M. Giard | J. Gonz'alez-Nuevo | K. M. G'orski | A. Gruppuso | D. Hanson | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | D. Herranz | S. Hildebrandt | W. Holmes | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | R. Kneissl | J. Knoche | G. Lagache | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | B. Maffei | D. Maino | N. Mandolesi | M. Maris | D. Marshall | P. Martin | E. Mart'inez-Gonz'alez | P. Mazzotta | L. Mendes | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | P. Natoli | F. Noviello | D. Novikov | I. Novikov | L. Pagano | F. Pajot | D. Paoletti | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | E. Pointecouteau | G. Polenta | N. Ponthieu | L. Popa | G. Pratt | J. Puget | J. Rachen | M. Remazeilles | C. Renault | I. Ristorcelli | G. Rocha | G. Roudier | M. Sandri | D. Santos | G. Savini | L. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | G. Umana | J. Valiviita | B. Tent | P. Vielva | F. Villa | L. Wade | I. Wehus | D. Yvon | A. Zonca | E. Calabrese | F. Elsner | S. Galli | E. Gjerløw | M. Lattanzi | J. Murphy | V. Stolyarov | N. Bartolo | J. Cardoso | C. Combet | A. Ducout | A. Frejsel | T. Ghosh | G. Hurier | F. Levrier | N. Oppermann | J. Soler | M. Alves | A. Bracco | Planck Collaboration R. Adam | K. Ferrière | D. Arzoumanian | V. Guillet | H. Wiesemeyer | A. Bonaldi | F. Villa | M. Sandri | M. Ashdown | N. Bartolo | K. Benabed | J.-P. Bernard | P. Bielewicz | F. R. Bouchet | A. Bracco | L. P. L. Colombo | C. Combet | A. Curto | R. J. Davis | P. de Bernardis | A. de Rosa | G. de Zotti | G. Efstathiou | F. Elsner | T. A. Ensslin | F. Finelli | A. A. Fraisse | S. Galli | T. Ghosh | M. Giard | J. Gonz'alez-Nuevo | F. K. Hansen | E. Keihanen | J.-M. Lamarre | A. Lasenby | M. Liguori | M. L'opez-Caniego | P. G. Martin | E. Mart'inez-Gonz'alez | A. Melchiorri | M. Migliaccio | M.-A. Miville-Deschenes | P. Naselsky | D. Paoletti | O. Perdereau | J.-L. Puget | M. Reinecke | G. Rocha | G. Roudier | J. A. Rubino-Mart'in | A.-S. Suur-Uski | J. A. Tauber | M. Tristram | J. Valiviita | P. R. Christensen | E. Battaner | A. Chamballu | S. Colombi | R. D. Davies | H. Dole | K. M. Huffenberger | T. R. Jaffe | R. Kneissl | J. Knoche | R. Leonardi | D. Mortlock | J. A. Murphy | F. Noviello | I. Novikov | M. Piat | S. Prunet | L. D. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | J.-F. Sygnet | M. Tucci | B. Van Tent | L. A. Wade | D. Yvon | H. Wiesemeyer | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | M. Linden-Vornle | G. Umana | M. I. R. Alves | A. Frejsel | E. Gjerlow | D. Arzoumanian | D. Scott | P. Christensen | D. Scott | J. Murphy | D. Scott | G. Rocha | J. Murphy | J. Bond | D. Harrison | C. Lawrence | D. Marshall | A.-S. Suur-Uski

[1]  R. F. Loewenstein,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006 .

[2]  Analysis of spiral arms using anisotropic wavelets: gas, dust and magnetic fields in M51 , 2006, astro-ph/0609787.

[3]  F. O. Alves,et al.  Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field , 2008, 0806.1189.

[4]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[5]  P. Koch,et al.  MAGNETIC FIELD PROPERTIES IN HIGH-MASS STAR FORMATION FROM LARGE TO SMALL SCALES: A STATISTICAL ANALYSIS FROM POLARIZATION DATA , 2010, 1008.0220.

[6]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[7]  E. Ostriker,et al.  DENSE CORE FORMATION IN SUPERSONIC TURBULENT CONVERGING FLOWS , 2011, 1101.2650.

[8]  A. Lazarian,et al.  Astrophysical Hydromagnetic Turbulence , 2013, 1307.5496.

[9]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[10]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[11]  T. Maciaszek,et al.  Planck pre-launch status: The HFI instrument, from specification to actual performance , 2010 .

[12]  N. Peretto,et al.  Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? , 2012, 1211.6360.

[13]  P. Hennebelle,et al.  The structure of the thermally bistable and turbulent atomic gas in the local interstellar medium , 2013, 1301.3446.

[14]  J. Kerp,et al.  Dark matter in the Milky Way II. The HI gas distribution as a tracer of the gravitational potential , 2007, 0704.3925.

[15]  Tsuyoshi Inoue,et al.  TWO-FLUID MAGNETOHYDRODYNAMICS SIMULATIONS OF CONVERGING H i FLOWS IN THE INTERSTELLAR MEDIUM. II. ARE MOLECULAR CLOUDS GENERATED DIRECTLY FROM A WARM NEUTRAL MEDIUM? , 2009, 0908.3701.

[16]  P. Hennebelle,et al.  Turbulent molecular clouds , 2012, 1211.0637.

[17]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[18]  Di Li,et al.  THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION , 2011, 1108.0410.

[19]  G. Lagache,et al.  Statistical properties of dust far-infrared emission , 2007, 0704.2175.

[20]  B. Wandelt,et al.  MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS , 2010 .

[21]  A. Goodman,et al.  Does near-infrared polarimetry reveal the magnetic field in cold dark clouds? , 1995 .

[22]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[23]  T. Murphy,et al.  GASS: The Parkes Galactic All-Sky Survey. II. Stray-Radiation Correction and Second Data Release , 2010, 1007.0686.

[24]  Joshua O. Gundersen,et al.  LUPUS I OBSERVATIONS FROM THE 2010 FLIGHT OF THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE FOR POLARIMETRY , 2013, 1307.5853.

[25]  India,et al.  Optical and submillimetre observations of Bok globules – tracing the magnetic field from low to high density , 2009, 0906.0248.

[26]  P. Bastien,et al.  GRAIN ALIGNMENT IN STARLESS CORES , 2014, 1411.1031.

[27]  B. Draine,et al.  Infrared extinction and polarization due to partially aligned spheroidal grains: Models for the dust toward the BN object , 1985 .

[28]  N. Peretto,et al.  TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A , 2013, 1309.2332.

[29]  L. Hartmann,et al.  EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION , 2008, 0812.3339.

[30]  Zhi-Yun Li,et al.  Magnetically Regulated Star Formation in Three Dimensions: The Case of the Taurus Molecular Cloud Complex , 2008, 0804.4201.

[31]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[32]  The Magnetic Field of Cloud 3 in L204 , 2014, 1407.3279.

[33]  J. Peek,et al.  MAGNETICALLY ALIGNED H i FIBERS AND THE ROLLING HOUGH TRANSFORM , 2013, 1312.1338.

[34]  A. Goodman,et al.  On the dispersion in direction of interstellar polarization , 1991 .

[35]  S. Miyama,et al.  An Origin of Filamentary Structure in Molecular Clouds , 1998 .

[36]  C. B. Netterfield,et al.  COMPARISON OF PRESTELLAR CORE ELONGATIONS AND LARGE-SCALE MOLECULAR CLOUD STRUCTURES IN THE LUPUS I REGION , 2014, 1405.0331.

[37]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[38]  E. Mortsell Calibrating Milky Way dust extinction using cosmological sources , 2012, 1210.2191.

[39]  C. Horellou,et al.  Magnetic fields and spiral arms in the galaxy M51 , 2010, 1001.5230.

[40]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[41]  B. M. Gaensler,et al.  PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS , 2011, 1111.3544.

[42]  T. Mouschovias,et al.  Ambipolar Diffusion, Interstellar Dust, and the Formation of Cloud Cores and Protostars. I. Basic Physics and Formulation of the Problem , 1993 .

[43]  The link between magnetic fields and filamentary clouds: bimodal cloud orientations in the Gould Belt , 2013, 1310.6261.

[44]  R. Beck Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields , 2007, 0705.4163.

[45]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[46]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[47]  C. Brunt,et al.  Trans-Alfvénic motions in the Taurus molecular cloud , 2011, 1110.0808.

[48]  J. Fiege,et al.  Polarized Submillimeter Emission from Filamentary Molecular Clouds , 2000, astro-ph/0005363.

[49]  R. B. Barreiro,et al.  Planck intermediate results: XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps , 2014, 1411.2271.

[50]  G. W. Pratt,et al.  Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence , 2014, 1405.0872.

[51]  Antonio Pereyra,et al.  Polarimetry toward the Musca Dark Cloud. I. The Catalog , 2004 .

[52]  Reconnection in a weakly stochastic field , 1998, astro-ph/9811037.

[53]  R. Klessen,et al.  From the warm magnetized atomic medium to molecular clouds , 2008, 0805.1366.

[54]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[55]  J. Dickey,et al.  Magnetically Dominated Strands of Cold Hydrogen in the Riegel-Crutcher Cloud , 2006, astro-ph/0608585.

[56]  P. Hennebelle On the origin of non-self-gravitating filaments in the ISM , 2013, 1306.5452.

[57]  L. Hartmann,et al.  Formation of Structure in Molecular Clouds: A Case Study , 2005, astro-ph/0507567.

[58]  J. Dickey,et al.  Infrared polarimetry and the galactic magnetic field. II: Improved models , 1992 .

[59]  P. A. R. Ade,et al.  Planck early results - XXIV. Dust in the diffuse interstellar medium and the galactic halo , 2011, 1101.2036.

[60]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[61]  J. Cardoso,et al.  The local theory of the cosmic skeleton , 2008, 0811.1530.

[62]  California Institute of Technology,et al.  Dispersion of Magnetic Fields in Molecular Clouds , 2008 .

[63]  California Institute of Technology,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. III. , 2011 .

[64]  E. Zweibel Ambipolar Drift in a Turbulent Medium , 2001, astro-ph/0107462.

[65]  University of Chicago,et al.  Statistical Assessment of Shapes and Magnetic Field Orientations in Molecular Clouds through Polarization Observations , 2009, 0907.3730.

[66]  The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence , 2005, astro-ph/0501482.

[67]  Alyssa A. Goodman,et al.  Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .

[68]  A. Basu,et al.  Magnetic fields in nearby normal galaxies: energy equipartition , 2013, 1305.2746.

[69]  L. Blitz,et al.  THE ORIGIN AND LIFETIME OF GIANT MOLECULAR CLOUD COMPLEXES , 1980 .

[70]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[71]  Jessie L. Dotson,et al.  Tracing the Magnetic Field in Orion A , 2004 .

[72]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[73]  C. B. Netterfield,et al.  AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION , 2013, 1303.1830.

[74]  G. W. Pratt,et al.  Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies , 2013, 1312.5446.

[75]  J. Stil,et al.  CHARACTERIZING MAGNETIZED TURBULENCE IN M51 , 2013, 1301.7508.

[76]  F. Shu,et al.  The gravitational collapse of a uniform spheroid. , 1965 .

[77]  S. Poppi,et al.  Galactic interstellar turbulence across the southern sky seen through spatial gradients of the polarization vector , 2014, 1404.6077.

[78]  P. Koch,et al.  EVOLUTION OF MAGNETIC FIELDS IN HIGH-MASS STAR FORMATION: LINKING FIELD GEOMETRY AND COLLAPSE FOR THE W51 e2/e8 CORES , 2009, 0905.1996.

[79]  Magnetic fields in molecular clouds , 2012 .

[80]  P. Hennebelle,et al.  Thermal condensation in a turbulent atomic hydrogen flow , 2004 .

[81]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[82]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[83]  E. Parker,et al.  Stochastic aspects of magnetic lines of force with application to cosmic-ray propagation. , 1969 .

[84]  David O. Jones,et al.  USING M DWARF SPECTRA TO MAP EXTINCTION IN THE LOCAL GALAXY , 2011, 1102.0280.

[85]  Brenda C. Matthews,et al.  THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .

[86]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[87]  K. Chyży Magnetic fields and gas in the cluster-influenced spiral galaxy NGC 4254. II. Structures of magnetic fields , 2007, 0712.4175.

[88]  T. Jones Infrared polarimetry and the interstellar magnetic field , 1989 .

[89]  R. B. Barreiro,et al.  Planck 2013 results. II. Low Frequency Instrument data processing , 2013, 1303.5063.

[90]  Bonn,et al.  Magnetic fields in barred galaxies - IV. NGC 1097 and NGC 1365 , 2005, astro-ph/0508485.

[91]  C. A. Oxborrow,et al.  Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy & Astrophysics.