Seizure Prediction

There is mounting evidence that seizures are preceded by characteristic changes in the EEG that are detectable minutes before seizure onset. Using novel signal analysis techniques, researchers are beginning to characterize the transition from the interictal to the ictal state in quantitative terms. This research has led to the development of automated seizure prediction algorithms. Active debate persists regarding the interpretation of research results, methods of signal analysis, as well as experimental and statistical methods for testing seizure prediction algorithms. Developments in this field have led to new theories on the mechanism of seizure development and resolution. The ability to predict seizures could lead the way to novel diagnostic and therapeutic methods for the treatment of patients with epilepsy.

[1]  W. Art Chaovalitwongse,et al.  Adaptive epileptic seizure prediction system , 2003, IEEE Transactions on Biomedical Engineering.

[2]  C. Elger,et al.  Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. , 1995, Electroencephalography and clinical neurophysiology.

[3]  L D Iasemidis,et al.  Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. , 1997, Electroencephalography and clinical neurophysiology.

[4]  I. Osorio,et al.  Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures. , 2004, Chaos.

[5]  J. Gotman,et al.  Interictal spiking increases after seizures but does not after decrease in medication. , 1989, Electroencephalography and clinical neurophysiology.

[6]  I. Osorio,et al.  Correlation dimension and integral do not predict epileptic seizures. , 2005, Chaos.

[7]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[8]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[9]  Hongtao Ma,et al.  Focal Increases in Perfusion and Decreases in Hemoglobin Oxygenation Precede Seizure Onset in Spontaneous Human Epilepsy , 2007, Epilepsia.

[10]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals; dependence on state and brain site. , 1991, Electroencephalography and clinical neurophysiology.

[11]  Panos M. Pardalos,et al.  Nonlinear Dynamical Systems and Adaptive Filters in Biomedicine , 2003, Ann. Oper. Res..

[12]  J. Martinerie,et al.  Epileptic seizures can be anticipated by non-linear analysis , 1998, Nature Medicine.

[13]  Leonidas D. Iasemidis,et al.  Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures , 2001, J. Comb. Optim..

[14]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[15]  Leonidas D. Iasemidis,et al.  Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy , 1996 .

[16]  Robert Savit,et al.  Seizure prediction using scalp electroencephalogram , 2003, Experimental Neurology.

[17]  I. Gath,et al.  On the prediction of epileptic seizures , 1981, Biological Cybernetics.

[18]  Patrick E. McSharry,et al.  Comparison of predictability of epileptic seizures by a linear and a nonlinear method , 2003, IEEE Transactions on Biomedical Engineering.

[19]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  F. Mormann,et al.  Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients , 2000 .

[21]  Leon D. Iasemidis,et al.  Epileptic seizure prediction and control , 2003, IEEE Transactions on Biomedical Engineering.

[22]  M. Velasco,et al.  Electrical Stimulation of the Hippocampal Epileptic Foci for Seizure Control: A Double‐Blind, Long‐Term Follow‐Up Study , 2007, Epilepsia.

[23]  Leonidas D. Iasemidis,et al.  The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex , 1991 .

[24]  A F Mirsky,et al.  Prediction of Spike‐Wave Bursts in Absence Epilepsy by EEG Power‐Spectrum Signals , 1982, Epilepsia.

[25]  Leonidas D. Iasemidis,et al.  On the dynamics of the human brain in temporal lobe epilepsy. , 1991 .

[26]  Saeid Sanei,et al.  Epileptic seizure predictability from scalp EEG incorporating constrained blind source separation , 2006, IEEE Transactions on Biomedical Engineering.

[27]  Graeme Jackson,et al.  The peri-ictal state: cortical excitability changes within 24 h of a seizure. , 2009, Brain : a journal of neurology.

[28]  W. Art Chaovalitwongse,et al.  Seizure warning algorithm based on optimization and nonlinear dynamics , 2004, Math. Program..

[29]  G McCarthy,et al.  Does interictal spiking change prior to seizures? , 1991, Electroencephalography and clinical neurophysiology.

[30]  W. Art Chaovalitwongse,et al.  Dynamical approaches and multi-quadratic integer programming for seizure prediction , 2005, Optim. Methods Softw..

[31]  J. Gotman,et al.  Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients , 1985, Annals of neurology.

[32]  Ying-Cheng Lai,et al.  Inability of Lyapunov exponents to predict epileptic seizures. , 2003, Physical review letters.

[33]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[34]  P E Rapp,et al.  Parameter-dependent transitions and the optimal control of dynamical diseases. , 1988, Bulletin of mathematical biology.

[35]  J P Lieb,et al.  Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. , 1983, Electroencephalography and clinical neurophysiology.

[36]  R. Lipton,et al.  Can patients with epilepsy predict their seizures? , 2007, Neurology.

[37]  Bruce Hermann,et al.  The impact of epilepsy from the patient’s perspective I. Descriptions and subjective perceptions , 2000, Epilepsy Research.

[38]  Jens Timmer,et al.  Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.

[39]  Klaus Lehnertz,et al.  Testing the null hypothesis of the nonexistence of a preseizure state. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Steve S. Chung,et al.  Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy , 2010, Epilepsia.

[41]  A. Schulze-Bonhage,et al.  The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods , 2003, Epilepsy & Behavior.

[42]  W. Sutherling,et al.  Quality of Life of Epilepsy Surgery Patients as Compared with Outpatients with Hypertension, Diabetes, Heart Disease, and/or Depressive Symptoms , 1994, Epilepsia.

[43]  P. Pardalos,et al.  Effects of Acute Hippocampal Stimulation on EEG Dynamics , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[44]  Shiv Kumar,et al.  Prediction of Human Epileptic Seizures based on Optimization and Phase Changes of Brain Electrical Activity , 2003, Optim. Methods Softw..

[45]  Viglione Ss,et al.  Proceedings: Epileptic seizure prediction. , 1975 .

[46]  Ding,et al.  Controlling chaos in high dimensions: Theory and experiment. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  K. Tsakalis,et al.  Long-term prospective on-line real-time seizure prediction , 2005, Clinical Neurophysiology.

[48]  J. Martinerie,et al.  Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. , 1999, Neuroreport.

[49]  Brian Litt,et al.  Time-frequency spectral estimation of multichannel EEG using the Auto-SLEX method , 2002, IEEE Transactions on Biomedical Engineering.

[50]  A. Schulze-Bonhage,et al.  How well can epileptic seizures be predicted? An evaluation of a nonlinear method. , 2003, Brain : a journal of neurology.

[51]  A. Kraskov,et al.  On the predictability of epileptic seizures , 2005, Clinical Neurophysiology.

[52]  P. Pardalos,et al.  Seizure Predictability in an Experimental Model of Epilepsy , 2007 .

[53]  Theodore R. Bashore,et al.  Experimental Studies of Chaotic Neural Behavior: Cellular Activity and Electroencephalographic Signals , 1986 .

[54]  John G. Milton,et al.  Medically Intractable Epilepsy , 2003 .

[55]  Robert Savit,et al.  Stationarity and nonstationarity in time series analysis , 1996 .

[56]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[57]  Mark C. K. Yang,et al.  Testing whether a prediction scheme is better than guess , 2004 .

[58]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[59]  J. Martinerie,et al.  Seizure anticipation in human neocortical partial epilepsy. , 2002, Brain : a journal of neurology.

[60]  R. Fisher,et al.  Patient awareness of seizures , 1996, Neurology.

[61]  Deng-Shan Shiau,et al.  Predictability Analysis for an Automated Seizure Prediction Algorithm , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[62]  Leonidas D. Iasemidis,et al.  Chaos Theory and Epilepsy , 1996 .

[63]  L Glass,et al.  Complex dynamics and bifurcations in neurology. , 1989, Journal of theoretical biology.

[64]  F. Mormann,et al.  Epileptic seizures are preceded by a decrease in synchronization , 2003, Epilepsy Research.

[65]  P. Pardalos,et al.  Performance of a seizure warning algorithm based on the dynamics of intracranial EEG , 2005, Epilepsy Research.

[66]  Hyong C Lee,et al.  Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. , 2003, Pediatric neurology.

[67]  J. Sackellares,et al.  EPILEPSY – WHEN CHAOS FAILS , 2000 .

[68]  G. Vachtsevanos,et al.  Epileptic Seizures May Begin Hours in Advance of Clinical Onset A Report of Five Patients , 2001, Neuron.

[69]  Klaus Lehnertz,et al.  Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  H. G. Wieser,et al.  Electroencephalograms in epilepsy: analysis and seizure prediction within the framework of Lyapunov theory , 1999 .

[71]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.